Hyperspaces of Euclidean spaces in the Gromov–Hausdorff metric Sergey A. Antonyan¹ antonyan@unam.mx The Gromov–Hausdorff distance d_{GH} is a useful tool for studying topological properties of families of metric spaces. For two compact metric spaces X and Y the number $d_{GH}(X,Y)$ is defined to be the infimum of all Hausdorff distances $d_H(i(X),j(Y))$ for all metric spaces M and all isometric embeddings $i:X\to M$ and $j:Y\to M$. Clearly, the Gromov–Hausdorff distance between isometric spaces is zero; it is a metric on the family GH of isometry classes of compact metric spaces. The metric space (GH, d_{GH}) is called the Gromov–Hausdorff hyperspace. This talk is devoted to the subspace $GH(\mathbb{R}^n)$ of GH consisting of the classes $[E] \in GH$ whose representative E is a metric subspace of the Euclidean space \mathbb{R}^n , $n \geq 1$. $GH(\mathbb{R}^n)$ is called the Gromov–Hausdorff hyperspace of \mathbb{R}^n . One of the main results of this talk asserts that $GH(\mathbb{R}^n)$ is homeomorphic to the orbit space $2^{\mathbb{R}^n}/E(n)$, where $2^{\mathbb{R}^n}$ is the hyperspace of all nonempty compact subsets of \mathbb{R}^n endowed with the Hausdorff metric and E(n) is the isometry group of \mathbb{R}^n . This is applied to prove that $GH(\mathbb{R}^n)$ is homeomorphic to the Hilbert cube with a removed point. Copyright © Antonyan $^{^{}m 1}$ The author was partially supported by the UNAM grant PAPIIT-IN101314