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(Local) Bases indexed by posets

Let P be a poset, i.e., a set endowed with a partial order ≤.

Definition (Topological)

A topological space X has a local P-base at a point x ∈ X
if X has a neighborhood base (Uα)α∈P at x such that
Uβ ⊂ Uα for any α ≤ β in P.
A topological space X has a local P-base if
X has a local P-base at each point x ∈ X .

Definition (Uniform)

A uniform space X has a P-base (or is P-based) if its uniformity
U(X ) has a base {Uα}α∈P such that Uβ ⊂ Uα for all α ≤ β in P.

Example

A topological space X has a local ω-base ⇔ X is first-countable.
A uniform space X has an ω-base ⇔ X is metrizable.
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(Local) P-bases for countable posets

Let P be a countable poset or, more generally, a poset containing
a countable cofinal subset.

Example

A topological space X has a local P-base ⇔ X is first-countable.
A uniform space X has a P-base ⇔ X is metrizable.

So, for countable posets P (local) P-bases give nothing new.
One of the simplest posets of uncountable cofinality is the
countable power ωω of the countable cardinal ω, endowed with the
partial order ≤ defined by f ≤ g iff f (n) ≤ g(n) for all n ∈ ω.
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G-bases

For the poset ωω, topological spaces with local ωω-base are called
spaces with a G-base.

This terminology came from Functional Analysis and was brought
to Topological Algebra and General Topology by Jerzy Ka̧kol.

But we prefer and agitate to use the more self-suggesting
terminology of local ωω-bases for topological spaces and
ωω-bases for uniform spaces.

Our Initial Problem was: Characterize topological spaces whose
free objects (like free topological groups or free locally convex
spaces) have a local ωω-base.

This initial motivation problem led us to a more
General Problem: What interesting can be said about
topological or uniform spaces with a (local) ωω-base?
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Stability properties of the class of
topological spaces with a local ωω-base

Theorem

The class of topological spaces X with a local ωω-base contains all
first-countable spaces and is stable under taking

subspaces,

images under open maps,

countable Tychonoff products,

countable box-products,

inductive topologies determined by countable covers,

images under pseudo-open maps with countable fibers.

Corollary

Each submetrizable kω-space has a local ωω-base (since any such
space embeds into the countable box-power of the Hilbert cube).
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Character of spaces with a local ωω-base

Theorem

If a topological space X has a local ωω-base at a point x ∈ X , then
at this point the space X has character χ(x ;X ) ∈ {1, ω} ∪ [b, d].

Example

For a cardinal κ ∈ {b, d, cf(d)} the ordinal segment [0, κ] has a
local ωω-base at the point κ.

Proof.

For κ = b, choose an unbounded subset {xα}α∈b ⊂ ωω in the
poset (ωω,≤∗) and define an ωω-base (Ux)x∈ωω at b ∈ [0, b] by
Ux = (αx , b] where αx = min{α ∈ b : xα 6≤∗ x}.
For κ = d choose a dominating set {xα}α∈d in the poset ωω and
define an ωω-base (Ux)x∈ωω at d = [0, d] by Ux = (αx , d] where
αx = min{α ∈ d : x ≤∗ xα}.
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Compact spaces with a (local) ωω-base

Example

Under ω1 = b the ordinal segment [0, ω1] has a local ωω-base.
Under ω1 = b < d = ω2 the segment [0, ω2] has a local ωω-base.

According to a famous theorem of Arhangel’skii, each
first-countable compact Hausdorff space has cardinality ≤ c.

Problem

Is |X |≤c for any compact Hausdorff space X with a local ωω-base?

Theorem (Cascales-Orihuela, 1987)

Each compact ωω-based uniform space is metrizable.

What can be said about non-compact ωω-based uniform spaces?
Informal answer: Such spaces have many features of generalized
metric spaces.
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Various types of local networks

Definition

A family N of subsets of a topological space X is called

a network at x ∈ X if for every neighborhood Ox ⊂ X of x
there is a set N ∈ N such that x ∈ N ⊂ U;

a cs∗-network at x if for every neighborhood Ox of x and
sequence (xn)n∈ω converging to x there is a set N ∈ N such
that x ∈ N ⊂ Ox and N contains infinitely many points xn;

a Pytkeev∗-network at x if for every neighborhood Ox of x
and sequence (xn)n∈ω accumulating at x there is N ∈ N such
that x ∈ N ⊂ Ox and N contains infinitely many points xn.

neighborhood base ⇒ Pytkeev∗ network ⇒ cs∗-network ⇒ network
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Definition

A topological space X is

strong Fréchet at x ∈ X if for any decreasing sequence
(An)n∈ω of subsets of X with x ∈

⋂
n∈ω Ān there exists a

sequence (xn)n∈ω ∈
∏

n∈ω An converging to x ;

countable fan tightness at x ∈ X if for any decreasing
sequence (An)n∈ω of subsets of X with x ∈

⋂
n∈ω Ān there

exists a sequence (Fn)n∈ω of finite subsets Fn ⊂ An such that
each neighborhood of x meets infinitely many sets Fn.

Proposition (folklore)

For a topological space X and a point x ∈ X TFAE:

1 X has a countable neighborhood base at x .

2 X has a countable cs∗-network at x and is strong Fréchet at x .

3 X has a countable Pytkeev∗ network at x and has countable
fan tightness at x .
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n∈ω Ān there exists a

sequence (xn)n∈ω ∈
∏

n∈ω An converging to x ;

countable fan tightness at x ∈ X if for any decreasing
sequence (An)n∈ω of subsets of X with x ∈

⋂
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Spaces with a local ωω-base
have a countable Pytkeev∗ network

Theorem (B., 2016)

If a topological space X has a local ωω-base at a point x ∈ X ,
then X has a countable Pytkeev∗ network at x .

Idea of the proof: Let (Uα)α∈ωω be a local ωω-base at x .
Given a subset A ⊂ ωω consider the intersection UA =

⋂
α∈A Uα.

Let ω<ω =
⋃

n∈ω ω
n and for every β ∈ ωn ⊂ ω<ω consider the

basic clopen set ↑β = {α ∈ ωω : α|n = β} ⊂ ωω.

Lemma

The countable family (U↑β)β∈ω<ω is a Pytkeev∗ network at x .
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Proof of the lemma

Lemma

The countable family (U↑β)β∈ω<ω is a Pytkeev∗ network at x .

Idea of the proof: Given a sequence (xn)n∈ω accumulating at x ,
use the ωω-base (Uα)α∈ωω to prove that the filter

F =
{
{n ∈ ω : xn ∈ Ox} : Ox is a neighborhood of x

}
is analytic as a subset of P(ω) and hence is meager. Then apply
the Talagrand characterization of meager filters to find a
finite-to-one map ϕ : ω → ω such that ϕ(F) is a Fréchet filter.
This map ϕ can be used to prove that for every α ∈ ωω there exists
k ∈ ω such that U↑(α|k) contains infinitely many points xn, n ∈ ω.
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The cardinality of spaces with a local ωω-base

Theorem (B.-Zdomskyy, 27.07.2016)

If a countably tight space X has a countable Pytkeev∗ network at
any point, then |X |≤2L(X ) where L(X ) is the Lindelöf number of X .

Corollary (B.-Zdomskyy, 27.07.2016)

Each countably tight space X with a local ωω-base has |X |≤2L(X ).

Example

For any cardinal κ the ordinal segment [0, κ] has a countable
Pytkeev∗ network at each point.

Problem

Is |X |≤c for any compact Hausdorff space X with a local ωω-base?

The answer is “yes” if 2d = c.
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First countability versus a local ωω-base

Theorem

A topological space X is first countable at x ∈ X if and only if
X has a local ωω-base at x and X has countable fan tightness at x .
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Metrizability versus ωω-base of the uniformity

A subset A of a topological space X is called a Ḡδ-set if
A =

⋂
n∈ω Un =

⋂
n∈ω Ūn

for some sequence (Un)n∈ω of open sets.

A subset of a normal space is Ḡδ if and only if it is Gδ.
The following metrization theorem follows from the Metrization
Theorem of Moore.

Theorem

A topological space X is metrizable if and only if X is
first-countable, each closed subset of X is a Ḡδ-set in X and the
topology of X is generated by an ωω-based uniformity.

Corollary

A topological space X is metrizable and separable if and only if X
is first-countable, hereditarily Lindelöf and
the topology of X is generated by an ωω-based uniformity.
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A =

⋂
n∈ω Un =

⋂
n∈ω Ūn
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the topology of X is generated by an ωω-based uniformity.

T.Banakh



Metrizability versus ωω-base of the uniformity

A subset A of a topological space X is called a Ḡδ-set if
A =

⋂
n∈ω Un =

⋂
n∈ω Ūn
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First-countablity of ωω-based uniform spaces

Theorem

For an ωω-based uniform space X the following conditions are
equivalent:

1 X is first-countable at x ;

2 X has countable fan tightness at x ;

3 X is a q-space at x .

A topological space X is called a q-space at x ∈ X if there are
neighborhoods (Un)n∈ω of x such that each sequence
(xn)n∈ω ∈

∏
n∈ω Un has an accumulation point x∞ in X .
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w∆-spaces, M-spaces and Gδ-diagonals

Definition

A topological space X is called

1 a space with a Gδ-diagonal if the diagonal of the square
X ×X is a Gδ-set in X ; this happens if and only if there exists
a sequence (Un)n∈ω of open covers of X such that
{x} =

⋂
n∈ω St(x ,Un) for each x ∈ X ;

2 a w∆-space if there exists a sequence (Un)n∈ω of open covers
of X such that for every x ∈ X , any sequence
(xn)n∈ω ∈

∏
n∈ω St(x ,Un) has an accumulation point in X ;

3 an M-space if there exists a sequence (Un)n∈ω of open covers
of X such that each Un+1 star-refines Un and for every x ∈ X ,
any sequence (xn)n∈ω ∈

∏
n∈ω St(x ,Un) has an accumulation

point in X .

metrizable ⇔ M-space with a Gδ-diagonal
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ωω-based uniform w∆-spaces have a Gδ-diagonal

Theorem

A topological space X has a Gδ-diagonal if X is a w∆-space and
the topology of X is generated by an ωω-based uniformity.

Corollary

A topological space X is metrizable if and only if X is an M-space
and the topology of X is generated by an ωω-based uniformity.

Corollary (Cascales-Orihuela)

A compact space is metrizable if and only if its topology is
generated by an ωω-based uniformity.
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Σ-spaces and σ-spaces

Definition

A family N of subsets of a topological space X is called

a network if for each point x ∈ X and neighborhood Ox ⊂ X
of x there is a set N ∈ N such that x ∈ N ⊂ Ox ;

a C-network for a family C of subsets of X if for each set
C ∈ C and neighborhood OC ⊂ X of C there is a set N ∈ N
such that C ⊂ N ⊂ Ox .

Definition

A regular topological space X is called

cosmic if X has a countable network;

a σ-space if X has a σ-discrete network;

a Σ-space if X has a σ-discrete C-network for some family C
of closed countably compact subsets of X .

Σ-space ⇒ σ-space ⇒ cosmic.
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ωω-based uniform Σ-spaces are σ-spaces

Σ-space ⇒ σ-space ⇒ cosmic.

Theorem

An ωω-based uniform space X is a Σ-space iff X is a σ-space.

Corollary (Cascales-Orihuela)

Each compact ωω-based uniform space is metrizable.
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ℵ0-spaces, ℵ-spaces, P0-spaces, P∗-spaces

Definition

A topological space X is called

an ℵ0-space if X has a countable cs∗-network;

an ℵ-space if X has a σ-discrete cs∗-network;

a P0-space if X has a countable Pytkeev∗ network;

a P∗-space if X has a σ-discrete Pytkeev∗ network.

metrizable
separable

+3

��

P0-space +3

��

ℵ0-space +3

��

cosmic +3

��

Lindelöf
Σ-space

��
metrizable +3 P∗-space +3 ℵ-space +3 σ-space +3 Σ-space.
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ωω-based uniform σ-spaces are P∗-spaces

metrizable
separable

+3

��

P0-space +3

��

ℵ0-space +3

��

cosmic +3

��

Lindelöf
Σ-space

��
metrizable +3 P∗-space +3 ℵ-space +3 σ-space +3 Σ-space.

Theorem

For an ωω-based uniform space the following equivalences hold:

1 σ-space ⇔ Σ-space.

2 paracompact P∗-space ⇔ collectionwise normal Σ-space.

Problem

Is each ωω-based uniform Σ-space a P∗-space?
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ω-continuous functions on uniform spaces

For a uniform space X by U(X ) we denote the universality of X .

Definition

A function f : X → Y between uniform spaces is called
ω-continuous if for every untourage U ∈ U(Y ) there exists a
countable subfamily V ⊂ U(X ) such that for every x ∈ X there
exists V ∈ V with f (V [x ]) ⊂ U[f (x)].
Here V [x ] = {y ∈ X : (x , y) ∈ V } is the V -ball centered at x .

For a uniform space X let Cω(X ) and Cu(X ) be the spaces of all
ω-continuous and uniformly continuous real-valued functions on X ,
respectively.
It is clear that Cu(X ) ⊂ Cω(X ) ⊂ C (X ) ⊂ RX .

If U(X ) is the universal uniformity on a Tychonoff space X , then
Cu(X ) = Cω(X ) = C (X ).
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Characterizing “small” ωω-based uniform spaces

Theorem

For an ωω-based uniform space X TFAE:

(1) X contains a dense Σ-subspace with countable extent;

(2) X is separable;

(3) X is cosmic;

(4) X is an ℵ0-space;

(5) X is a P0-space.

If Cω(X ) = Cu(X ), then the conditions (1)–(5) are equivalent to:

(6) X is σ-compact.

(7) Cu(X ) is cosmic (or analytic);

(8) Cu(X ) is K -analytic (or has a compact resolution).

If ω1 < b, then (1)–(5) are equivalent to

(9) X is ω-narrow.

If ω1 = b, there exists a Lindelöf non-separable ωω-based space.
T.Banakh
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Width and depth of a uniform space

A uniform space is ω-narrow if width(X ) ≤ ω1, where

width(X ) = min{κ : ∀U ∈ U(X ) ∃C ∈ [X ]<κ X = U[C ]};
depth(X ) = min{|V| : V ⊂ U(X ) ∩V /∈ U(X )}.

If ∆X ∈ U(X ), then the cardinal depth(X ) is not defined.
In this case we put depth(X ) =∞ and assume that
∞ > κ for any cardinal κ.
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Local ωω-base in free objects of Topological Algebra

Theorem

For a uniform space X consider the following statements:

(A) The free Abelian topological group of X has a local ωω-base.

(B) The free Boolean topological group of X has a local ωω-base.

(F) The free topological group of X has a local ωω-base.

(L) The free locally convex space of X has a local ωω-base.

(V) The free topological vector space of X has a local ωω-base.

(U) The uniformity of X has an ωω-base.

(σ) The space X is σ-compact.

(Σ) X is discrete or σ-compact or width(X ) ≤ depth(X ).

If Cω(X ) = Cu(X ), then

(L)⇔ (V )⇔ (U+σ)⇒ (U+Σ)⇒ (F )⇒ (A)⇔ (B)⇔ (U).

If Cu(X ) = C (X ), then (U+Σ)⇔ (F ) iff e] = ω1 if b = d.
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The small uncountable cardinal e]

e] = sup{κ+ : ω ≤ κ = cf(κ), κκ ≤T ωω}

Theorem

e] ∈ {ω1} ∪ (b, d]. So, b = d implies e] = ω1.

Theorem (B., Zdomskyy)

1 It is consistent that b < d and e] = ω1.

2 It is consistent that e] > ω1.

Problem

Is e] equal to any known cardinal characteristic of the continuum?

T.Banakh



The small uncountable cardinal e]

e] = sup{κ+ : ω ≤ κ = cf(κ), κκ ≤T ωω}

Theorem

e] ∈ {ω1} ∪ (b, d]. So, b = d implies e] = ω1.

Theorem (B., Zdomskyy)

1 It is consistent that b < d and e] = ω1.

2 It is consistent that e] > ω1.

Problem

Is e] equal to any known cardinal characteristic of the continuum?

T.Banakh



The small uncountable cardinal e]

e] = sup{κ+ : ω ≤ κ = cf(κ), κκ ≤T ωω}

Theorem

e] ∈ {ω1} ∪ (b, d]. So, b = d implies e] = ω1.

Theorem (B., Zdomskyy)

1 It is consistent that b < d and e] = ω1.

2 It is consistent that e] > ω1.

Problem

Is e] equal to any known cardinal characteristic of the continuum?

T.Banakh



The small uncountable cardinal e]

e] = sup{κ+ : ω ≤ κ = cf(κ), κκ ≤T ωω}

Theorem

e] ∈ {ω1} ∪ (b, d]. So, b = d implies e] = ω1.

Theorem (B., Zdomskyy)

1 It is consistent that b < d and e] = ω1.

2 It is consistent that e] > ω1.

Problem

Is e] equal to any known cardinal characteristic of the continuum?

T.Banakh



The small uncountable cardinal e]

e] = sup{κ+ : ω ≤ κ = cf(κ), κκ ≤T ωω}

Theorem

e] ∈ {ω1} ∪ (b, d]. So, b = d implies e] = ω1.

Theorem (B., Zdomskyy)

1 It is consistent that b < d and e] = ω1.

2 It is consistent that e] > ω1.

Problem

Is e] equal to any known cardinal characteristic of the continuum?

T.Banakh



The small uncountable cardinal e]

e] = sup{κ+ : ω ≤ κ = cf(κ), κκ ≤T ωω}

Theorem

e] ∈ {ω1} ∪ (b, d]. So, b = d implies e] = ω1.

Theorem (B., Zdomskyy)

1 It is consistent that b < d and e] = ω1.

2 It is consistent that e] > ω1.

Problem

Is e] equal to any known cardinal characteristic of the continuum?

T.Banakh



References

T. Banakh, Topological spaces with a local -base have the
strong Pytkeev property, preprint
(http://arxiv.org/abs/1607.03599).

T. Banakh, ωω-bases in topological and uniform spaces,
preprint (http://arxiv.org/abs/1607.07978).

T. Banakh, A. Leiderman, G-bases in free (locally convex)
topological vector spaces, preprint
(https://arxiv.org/abs/1606.01967).

T. Banakh, A. Leiderman, Local ωω-bases in free topological
(Abelian) groups, in preparation.

T.Banakh



T.Banakh


