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drekin@gmail.com

Faculty of Mathematics and Physics
Charles University in Prague

Twelfth Symposium on General Topology
Prague, July 2016

mailto:drekin@gmail.com


Maximal and minimal topologies

Definition

Let X be a set. The set of all topologies on X is a complete lattice
denoted by T (X ).
Let P be a property of topological spaces.

We say a topology τ ∈ T (X ) is maximal P if it is a maximal
element of {σ ∈ T (X ) : σ satisfies P}, i.e. τ satisfies P but
no strictly finer topology satisfies P. In that case 〈X , τ〉 is
a maximal P space.

We say a topology τ ∈ T (X ) is minimal P if it satisfies P but
no strictly coarser topology satisfies P. In that case 〈X , τ〉 is
a minimal P space.



Maximal and minimal topologies

Examples

Maximal space means maximal without isolated points.

A compact Hausdorff space is both maximal compact and
minimal Hausdorff.

We are interested in maximal connected spaces.

For more examples see [Cameron, 1971].

Maximal connected topologies were first considered by Thomas
in [Thomas, 1968]. Thomas proved that an open connected
subspace of a maximal connected space is maximal connected,
and characterized finitely generated maximal connected spaces.



Maximal connected spaces

Definition

A topological spaces is called

maximal connected [Thomas, 1968] if it is connected and has
no connected strict expansion;

strongly connected [Cameron, 1971] if it has a maximal
connected expansion;

essentially connected [Guthrie–Stone, 1973] if it is connected
and every connected expansion has the same connected
subsets.

Observation

Every maximal connected space is both strongly connected and
essentially connected.



Subspaces of maximal connected spaces

Lemma

Let 〈Y , σ〉 be a subspace of a connected space 〈X , τ〉. For every
connected expansion σ∗ ≥ σ there exists a connected expansion
τ∗ ≥ τ such that τ∗ � Y = σ∗.

Sketch of the proof.
We put τ∗ := τ ∨ {S ∪ (X \ Y ) : S ⊆ Y σ∗-open}.

Corollary

The following properties are preserved by connected subspaces:

maximal connectedness [Guthrie–Reynolds–Stone, 1973],

essential connectedness [Guthrie–Stone, 1973],

strong & essential connectedness.



Strongly connected and essentially connected topologies

Theorem [Hildebrand, 1967]

The real line is essentially connected.

Theorem [Simon, 1978] and [Guthrie–Stone–Wage, 1978]

There exists a maximal connected expansion of the real line.

Corollary

The spaces R, [0, 1), [0, 1] are both strongly connected and
essentially connected.



Non-strongly connected topologies

Theorem [Guthrie–Stone, 1973]

No Hausdorff connected space with a dispersion point has a
maximal connected expansion.

A dispersion point is the only cutpoint of a connected space.

Every infinite Hausdorff maximal connected space has
infinitely many cutpoints.

Observation

Strong connectedness is not preserved by connected subspaces
since Knaster–Kuratowski fan / Cantor’s leaky tent is a subspace
of R2.



Submaximal, nodec, and T 1
2
spaces

Definition

Recall the following properties of a topological space X .

X is submaximal if every its dense subset is open.

X is nodec if every its nowhere dense subset is closed.

X is T 1
2

if every its singleton is open or closed.

We have the following implications.
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Tree sums of topological spaces

Definition

Let 〈Xi : i ∈ I 〉 be an indexed family of topological spaces, ∼ an
equivalence on

∑
i∈I Xi , and X :=

∑
i∈I Xi/∼. We consider

the canonical maps ei : Xi → X ,

the canonical quotient map q :
∑

i∈I Xi → X ,

the set of gluing points SX := {x ∈ X : |q−1(x)| > 1},
the gluing graph GX with vertices I t SX and edges of from
s →x i where s ∈ SX , i ∈ I , and x ∈ Xi such that ei (x) = s.

We say that X is a tree sum if GX is a tree, i.e. for every pair of
distinct vertices there is a unique undirected path connecting them.

Example

A wedge sum, that is a space
∑

i∈I Xi/∼ such that one point is
chosen in each space Xi and ∼ is gluing these points together, is
an example of a tree sum.



Tree sums of topological spaces

Proposition

A topological space X is naturally homeomorphic to a tree sum of
a family of its subspaces 〈Xi : i ∈ I 〉 if and only if the following
conditions hold.

1
⋃

i∈I Xi = X ,

2 X is inductively generated by embeddings {ei : Xi → X}i∈I ,
3 G is a tree, where G is the graph on S t I satisfying

S := {x ∈ X : |{i ∈ I : x ∈ Xi}| ≥ 2},
s → i is an edge if and only if s ∈ S , i ∈ I , and s ∈ Xi .



Tree sums of topological spaces

Proposition

Let X be a tree sum of spaces 〈Xi : i ∈ I 〉 such that every gluing
point of X is closed. A subset C ⊆ X is connected if and only if
every C ∩ Xi is connected and GC is connected (i.e. it is a subtree
of GX ), where GC is the subgraph of GX induced by IC t SC ,

IC := {i ∈ I : C ∩ Xi 6= ∅}, SC := SX ∩ C .

In this case, C is the induced tree sum of spaces 〈C ∩ Xi : i ∈ i〉.

Proposition

Let 〈X , τ〉 :=
∑

i∈I 〈Xi , τi 〉/∼ be a tree sum, A ⊆ P(X ). We put
τ∗ := τ ∨ A, τ∗i := τi ∨ {A ∩ Xi : A ∈ A} for i ∈ I . If

the set of gluing points SX is closed discrete in 〈X , τ〉,
the family A is point-finite at every point of SX ,

then 〈X , τ∗〉 =
∑

i∈I 〈Xi , τ
∗
i 〉/∼, i.e. such expansion of a tree sum

is a tree sum of the corresponding expansions.



Tree sums of maximal connected spaces

Theorem

Let X be a tree sum of spaces 〈Xi : i ∈ I 〉 such that the set of
gluing points is closed discrete.

1 If the spaces Xi are maximal connected, then X is such.

2 If the spaces Xi are strongly connected, then X is such.

3 If the spaces Xi are essentially connected, then X is such.

Examples

As a corollary we have that the spaces like Rκ, [0, 1]κ, Sn are are
strongly connected, and every topological tree graph is both
strongly connected and essentially connected.



Finitely generated maximal connected spaces

Definition

A topological space X is called finitely generated or Alexandrov if
every intersection of open sets is open. Equivalently, if

A =
⋃

x∈A {x} for every A ⊆ X .

[Thomas, 1968] characterized finitely generated maximal
connected spaces and introduced diagrams for visualizing
them.

[Kennedy–McCartan, 2001] reformulated the characterization in
the language of so-called degenerate A-covers.

We reformulate the characterization in the language of
specialization preorder and graphs and also provide
a visualization method.



Specialization preorder

Definition

The specialization preorder on a topological space X is defined by

x ≤ y :⇐⇒ {x} ⊆ {y}.

Facts

Every open set is an upper set.
Every closed set is a lower set.

The converse holds if and only if X is finitely generated.

The specialization preorder is an order if and only if X is T0.

Every isolated point is a maximal element,
every closed point is a minimal element.



Finitely generated maximal connected spaces

Let X be a finitely generated T 1
2

space.

The topology is uniquely determined by the specialization
preorder, which is an order with at most two levels.

Let us consider a graph GX on X such that there is an edge
between x , y ∈ X if and only if x < y or y < x .

X is connected ⇐⇒ GX is connected as a graph.

X is maximal connected ⇐⇒ GX is a tree.

Therefore, principal maximal connected spaces correspond to trees
with fixed bipartition and also to tree sums of copies of the
Sierpiński space.

Examples

The empty space, the one-point space, the Sierpiński space,
principal ultrafilter spaces, principal ultraideal spaces.



I-spaces

Definition

Let X be a topological space. By I (X ) we denote the set of all
isolated points of X .

X is an I-space if X \ I (X ) is discrete.

X is I-dense if I (X ) = X .

X is I-flavored if I (X ) \ I (X ) is discrete.

I-spaces were considered in [Arhangel’skii–Collins, 1995].

We are interested in maximal connected I-spaces, a class
containing finitely generated maximal connected spaces.

The term “maximal connected I-space” is unambiguous since
I-spaces are closed under expansions.



I-spaces

We have the following implications between the classes.

The red part is a meet semilattice with respect to conjunction.
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Maximal connected I-spaces

The green part collapses in the realm of maximal connected
spaces.
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I-extensions

Definition

Let X be a topological space, Y a set disjoint with X , and
F := 〈Fy : y ∈ Y 〉 an indexed family of filters on I (X ). Let X̂ be
the space with universe X ∪ Y and the following topology:

A ⊆ X̂ is open ⇐⇒

{
A ∩ X is open in X ,

A ∩ I (X ) ∈ Fy for every y ∈ A ∩ Y .

The space X̂ is called the I-extension of X by F .

Observations

X becomes an open subspace of X̂ .

I-spaces are precisely I-extensions of discrete spaces in a
canonical way.



Maximal connected I-extensions

Proposition

An I-extension of a maximal connected space is maximal connected
if and only if it is an I-extension by a family of ultrafilters.

Proposition

Let X be an I-space. If A ⊆ X , then A is an I-extension of A.

Corollary

Let X be a maximal connected I-space. If A ⊆ X is connected,
then A is an I-extension of A by a family of ultrafilters.



Towards characterization of maximal connected I-spaces

Definition

Let X be a topological space. We define the following, so that for
every ordinal α we have

Dα is a decomposition of X into connected subsets,

Eα is the corresponding equivalence,

Gα is a graph on Dα with 〈D, x〉 being an edge D → D ′ for
D 6= D ′ ∈ Dα if and only if D ∩ D ′ 3 x ,

D0 := {{x} : x ∈ X},
Dα+1 := {

⋃
C : C is an undirected component of Gα},

Eα :=
⋃
β<α Eα for limit α.

We denote the smallest α such that Dα = Dα+1 by ρ(X ).



Towards characterization of maximal connected I-spaces

Theorem

Let X be a maximal connected I-space, let α be an ordinal. Let
D ∈ Dα+1 and let C be the component of Gα such that D =

⋃
C.

1 C is an I-extension of C by a family of ultrafilters for every
C ∈ C. If α = 0, then the ultrafilters are principal. If α > 0,
then the ultrafilters are free.

2 The graph Gα � C is a tree.

3 D is the tree sum of its subspaces {C : C ∈ C}. The set of
gluing points is closed discrete.

Therefore, the members of Dρ(X ) are obtained by iteratively
forming tree sums of ultrafilter I-extensions.



Intersections of connected subsets

In the proof of the previous theorem, the following properties of
maximal connected spaces are needed.

Theorem [Neumann-Lara, Wilson; 1986]

Let X be an essentially connected space. If A,B ⊆ X are
connected, then A ∩ B is connected as well.

Corollary

Let X be an maximal connected space. If A,B ⊆ X are disjoint
and connected, then |A ∩ B| ≤ 1.

Proof.
We have A ∩ B ⊆ (A \ A) ∪ (B \ B), which is a closed discrete set
since X is submaximal.



Towards characterization of maximal connected I-spaces

Proposition

Every maximal connected space having only finitely many
nonisolated points is an I-space satisfying |D1| < ω and |D2| ≤ 1.
Therefore, it is a finite tree sum of free ultrafilter I-extensions of
finitely generated maximal connected spaces.

Because of the previous results, a maximal connected I-space X
such that |Dρ(X )| ≤ 1 may be called inductive. We shall conclude
with an example of a non-inductive maximal connected I-space.



Towards characterization of maximal connected I-spaces

Example

Let f : X → Y be a bijection between two disjoint sets, let U be a
free ultrafilter on X . Let X̂ be the I-extension of X with discrete
topology by the family 〈Fy : y ∈ Y 〉 where

Fy := {U ∈ U : f −1(y) ∈ U} for every y ∈ Y

The space X̂ is an example of a non-inductive maximal connected
I-space.
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