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@ We give a unifying cardinality bound for Hausdorff spaces
X from which it follows that
(a) |X| < 2LXX(X) (Arhangel'skil, 1969), and
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Overview

Overview

All spaces are Hausdorff.

@ We give a unifying cardinality bound for Hausdorff spaces
X from which it follows that

(a) |X| < 2LXX(X) (Arhangel'skil, 1969), and
(b) |X| < 2xX) if X is H-closed (Dow, Porter 1982).

@ Using convergent open ultrafilters we construct an operator
¢ : P(X) — P(X) with the property that

cl(A) C c(A) € clp(A)

forall A C X.
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Overview

All spaces are Hausdorff.

@ We give a unifying cardinality bound for Hausdorff spaces
X from which it follows that

(a) |X| < 2LXX(X) (Arhangel'skil, 1969), and
(b) |X| < 2xX) if X is H-closed (Dow, Porter 1982).

@ Using convergent open ultrafilters we construct an operator
¢ : P(X) — P(X) with the property that

cl(A) C c(A) € clp(A)

forall A C X.
@ We show |c(A)| < |AXX)
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Overview

Overview

All spaces are Hausdorff.

@ We give a unifying cardinality bound for Hausdorff spaces
X from which it follows that

(a) |X| < 2LXX(X) (Arhangel'skil, 1969), and
(b) |X| < 2xX) if X is H-closed (Dow, Porter 1982).

@ Using convergent open ultrafilters we construct an operator
¢ : P(X) — P(X) with the property that

cl(A) C c(A) € clp(A)

forall A C X.
@ We show |c(A)| < |AXX)
@ We use a standard closing-off argument
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Background

Background

Recall:
Definition

A space X is H-closed if for every open cover V of X there
exists W € [V]<“ such that X = |y cIW.
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Background

Background

Recall:

A space X is H-closed if for every open cover V of X there
exists W € [V]<“ such that X = |y cIW.

| A

Theorem

A space is H-closed if and only if it is closed in any Hausdorff
space in which it is embedded.
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Background

In 1982, Dow and Porter proved the following theorems.

If X is an H-closed space with a dense set of isolated points
then | X| < 2x(X),

This theorem can be extended to the general Hausdorff setting:

(In fact, the above theorem can be extended further by recent
results of Bella and C.).
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Background

In 1982, Dow and Porter proved the following theorems.

If X is an H-closed space with a dense set of isolated points
then | X| < 2x(X),

This theorem can be extended to the general Hausdorff setting:

If X is a space with a dense set of isolated points then

|X| < 2WHXOX(X),

(In fact, the above theorem can be extended further by recent
results of Bella and C.).
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Background

Every H-closed space X can be embedded as the remainder of
an H-closed extension Y of a discrete space such that
| X| = Y| and x(X) = x(Y).

Combining the previous two theorems:
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If X is H-closed then | X| < 2X(X) (in fact, | X| < 2ve(X)),
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Background

Every H-closed space X can be embedded as the remainder of
an H-closed extension Y of a discrete space such that
| X| = Y| and x(X) = x(Y).

Combining the previous two theorems:

Theorem (Dow, Porter)
If X is H-closed then | X| < 2X(X) (in fact, | X| < 2ve(X)),

@ Porter gave a simplified approach to the theorem at the top
in 1993
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Background

Every H-closed space X can be embedded as the remainder of
an H-closed extension Y of a discrete space such that
| X| = Y| and x(X) = x(Y).

Combining the previous two theorems:

Theorem (Dow, Porter)
If X is H-closed then | X| < 2X(X) (in fact, | X| < 2ve(X)),

@ Porter gave a simplified approach to the theorem at the top
in 1993

@ The theorem at the top depends heavily on finiteness and
is not known to extend to a general Hausdorff setting
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Background

@ In 2006 Hodel used x-nets and a very different closing-off
argument to show that | X| < 2x(X) if X is H-closed.
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Background

@ In 2006 Hodel used x-nets and a very different closing-off
argument to show that | X| < 2x(X) if X is H-closed.

@ Again, this approach seems not to generalize to a general
Hausdorff cardinality bound.
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Background

Question (Bella)

Does there exist a cardinality bound for a Hausdorff space X
that generalizes Arhangel’skii's Theorem and the Dow-Porter
result?

We can reframe this question:
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Background

Question (Bella)

Does there exist a cardinality bound for a Hausdorff space X
that generalizes Arhangel’skii's Theorem and the Dow-Porter
result?

We can reframe this question:

Does there exists a property P of a Hausdorff space that
generalizes both Lindeléf and H-closed spaces such that
|X| < 2X(X) for a space X with property P ?
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Background

The property “almost Lindeldf”, a generalization of both
H-closed and Lindel6f, would seem to be a natural candidate
for the property P.

Definition

For a space X and A C X, the almost Lindel6f degree of Ain X,
aL(A, X), is the least infinite cardinal x such that for every open
cover V of A there exists W € [V]=* such that A C J . CIW.
The almost Lindelof degree of X is aL(X) = aL(X, X), and X is
almost Lindeldf if aL(X) is countable.
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Background

However:
Theorem (Bella/Yaschenko 1998)

If k is a non-measurable cardinal then there exists an
almost-Lindeldf, first-countable Hausdorff space X such that
|X| > k.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

The set U and the invariant Z(X)

@ For a space X, fix an open ultrafilter assignment
f: X — EX, where

EX = {U : UWis a convergent open ultrafilter on X}.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

The set U and the invariant Z(X)

@ For a space X, fix an open ultrafilter assignment
f: X — EX, where

EX = {U : UWis a convergent open ultrafilter on X}.

@ fis also called a section of EX.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

The set U and the invariant Z(X)

@ For a space X, fix an open ultrafilter assignment
f: X — EX, where

EX = {U : UWis a convergent open ultrafilter on X}.

@ fis also called a section of EX.
@ For all x € X, denote f(x) by U.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

The set U and the invariant Z(X)

@ For a space X, fix an open ultrafilter assignment
f: X — EX, where

EX = {U : UWis a convergent open ultrafilter on X}.

@ fis also called a section of EX.
@ For all x € X, denote f(x) by U.

Definition

For a non-empty open set U C X, define

U={xeX:UeclU.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

For all non-empty open sets U,V C X,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

For all non-empty open sets U,V C X,
(@) U C int(clU) C int(clU) = U C clU,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

For all non-empty open sets U,V C X,
(@) U C int(clU) C int(clU) = U C clU,
by UnV=0UnVandUuV=0UuV,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

For all non-empty open sets U,V C X,
(@) U C int(clU) C int(clU) = U C clU,
by UnV=0UnVandUuV=0UuV,
(c) X\U = X\clU.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

A space X is H-closed if and only if for every open coverV of X
there exists W € [V]< such that X = |Jycw W.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

A space X is H-closed if and only if for every open coverV of X
there exists W € [V]< such that X = |Jycw W.

@ This is a formally stronger characterization of H-closed
than the standard definition.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

A space X is H-closed if and only if for every open coverV of X
there exists W € [V]< such that X = |Jycw W.

@ This is a formally stronger characterization of H-closed
than the standard definition.

@ The proof relies on the interaction between finiteness in the
definition of H-closed and the f.i.p. property of a filter.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Definition

For a space X, define the cardinal invariant I(X) is the least
infinite cardinal x such that for every open cover V of X there
exists W € [V]=* such that X = |y W.

By the previous Theorem, we see that the property “Z(X) =Ny
generalizes both H-closed and Lindeldf.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

The operator ¢

Definition
For a space X and A C X, define

c(A)={xeX:UnA#gforallx e Uecr(X)}.

A'is c-closed if A= c(A).

Compare with:
c(A)={xeX:UnA#goforallx e Ue 7(X)}

ch(A)={xeX:clUnA+gaforall x € Ue (X))},

and recall U C U C clU.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.
(a) AC c(A).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.
(a) AC c(A).
(b) ifAC Bthenc(A) C c¢(B).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.
(a) AC c(A).

(b) ifAC Bthenc(A) C c¢(B).
(c) clAC c(A) C cly(A).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.

(@) AC c(A).

(b) ifAC Bthenc(A) C c¢(B).

(c) clAC c(A) C cly(A).

(d) ifU is open, then clU = c(U) C C(U).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.

a) AC c(A).

b) if A C B then c(A) C c(B).

c) clA C c(A) C clp(A).

d) if U is open, then clU = c(U) C C(U).
)

(
(
(
(
(e) if X is regular then clA = c(A) = cly(A).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.

(a) AC c(A).

(b) ifAC Bthenc(A) C c¢(B).

(c) clAC c(A) C cly(A).

(d) ifU is open, then clU = c(U) C C(U).
(e) if X is regular then clA = c(A) = cly(A).
(f) If Ais c-closed then A is closed.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.
(a) AC c(A).
(b) ifAC Bthenc(A) C c¢(B).

(c) clAC c(A) C cly(A).
(d) ifU is open, then clU = c(U) C c(U)
(e) if X is regular then clA = c(A) = cly(A).
(f) If Ais c-closed then A is closed.
)

(9) c(A) is a closed subset of X.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Let X be a space, and A, B C X.
(a) AC c(A).
(b) ifAC Bthenc(A) C c¢(B).

(c) clAC c(A) C cly(A).
(d) ifU is open, then clU = c(U) C c(U)
(e) if X is regular then clA = c(A) = cly(A).
(f) If Ais c-closed then A is closed.
(9) c(A) is a closed subset of X.

h)

(h) If X is H-closed then c(A) is an H-set.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Proposition

If X is a space and a C is a c-closed subset of X, then
L(C X) < L(X ).

l.e., the invariant Z(X) is hereditary on c-closed subsets of X.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (c/(A) # c(A) # cly(A))
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (c/(A) # c(A) # cly(A))

@ We use Urysohn’s space U defined in 1925, where
U= (NxZ)U{£o0}.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (c/(A) # c(A) # cly(A))

@ We use Urysohn’s space U defined in 1925, where
U= (NxZ)U{£o0}.
@ A subset U C U is defined to be open
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (c/(A) # c(A) # cly(A))

@ We use Urysohn’s space U defined in 1925, where
U = (N x Z) U {#00}.
@ A subset U C U is defined to be open
@ if +oo € U there exists k € N such that

Bx={(n,m):n>k meN} C U,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (c/(A) # c(A) # cly(A))

@ We use Urysohn’s space U defined in 1925, where
U = (N x Z) U {#00}.
@ A subset U C U is defined to be open
@ if +oo € U there exists k € N such that

Bx={(n,m):n>k meN} C U,
@ if —oo € U there exists k € N such that

Sk{(n,—m):n>k, meN} C U,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (c/(A) # c(A) # cly(A))

@ We use Urysohn’s space U defined in 1925, where
U = (N x Z) U {#00}.
@ A subset U C U is defined to be open
@ if +oo € U there exists k € N such that

Bx={(n,m):n>k meN} C U,
@ if —oo € U there exists k € N such that

Sk{(n,—m):n>k, meN} C U,
© if (n,0) € U there exists k € N such that

{(n,£m): m> k} C U,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (c/(A) # c(A) # cly(A))

@ We use Urysohn’s space U defined in 1925, where
U = (N x Z) U {#00}.
@ A subset U C U is defined to be open
@ if +oo € U there exists k € N such that

Bx={(n,m):n>k meN} C U,
@ if —oo € U there exists k € N such that

Sk{(n,—m):n>k, meN} C U,
© if (n,0) € U there exists k € N such that

{(n,£m): m> k} C U,

©Q otherwise (n, m) is isolated.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con’t)
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.

@ Let k: EU — U be the map from the absolute EU to U.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.
@ Let k: EU — U be the map from the absolute EU to U.

@ LetU € k5 (c0) and 'V € kS (—o0)
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.

@ Let k: EU — U be the map from the absolute EU to U.

@ LetU € k5 (c0) and 'V € kS (—o0)

@ Forne N, let U, € k((n,0)) be such that {n} x N € Up;
thus, U, — (n,0).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.

@ Let k: EU — U be the map from the absolute EU to U.

@ LetU € k5 (c0) and 'V € kS (—o0)

@ Forne N, let U, € k((n,0)) be such that {n} x N € Up;
thus, U, — (n,0).

@ Define an open ultrafilter assignment f: U — EU by
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.

@ Let k: EU — U be the map from the absolute EU to U.
@ LetU € k5 (c0) and 'V € kS (—o0)

@ Forne N, let U, € k((n,0)) be such that {n} x N € Up;
thus, U, — (n,0).
@ Define an open ultrafilter assignment f: U — EU by
Q f(c0) =U, f(—o0) =,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.
@ Let k: EU — U be the map from the absolute EU to U.
@ LetU € k5 (c0) and 'V € kS (—o0)
@ Forne N, let U, € k((n,0)) be such that {n} x N € Up;
thus, U, — (n,0).
@ Define an open ultrafilter assignment f: U — EU by
Q@ f(c0) = U, f(—c0) =V,
Q@ f((n,0)) =Up, and

Nathan Carlson A Cardinality Bound for Hausdorff Spaces



U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ The space U is first countable, minimal Hausdorff
(H-closed and semiregular) but is not compact as
A= {(n,0) : n € N} is an infinite, closed discrete subset.
@ Let k: EU — U be the map from the absolute EU to U.
@ LetU € k5 (c0) and 'V € kS (—o0)
@ Forne N, let U, € k((n,0)) be such that {n} x N € Up;
thus, U, — (n,0).
@ Define an open ultrafilter assignment f: U — EU by
Q@ f(c0) = U, f(—c0) =V,
Q@ f((n,0)) =Up, and
Q f(n,m)={U e 7(U): (n,m) e U} for
(n,m) € N x Z\(N x {0})
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Co
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ It is easily seen that cly(A) = Aand cly(A) = AU {£o0}.
Thus A C ¢(A) C AU {£o0}.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ It is easily seen that cly(A) = Aand cly(A) = AU {£o0}.
Thus A C ¢(A) C AU {£o0}.

@ To see that co € ¢(A), for n € N consider the basic open
set R, U {oco} containing oco.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ It is easily seen that cly(A) = Aand cly(A) = AU {£o0}.
Thus A C ¢(A) C AU {£o0}.

@ To see that co € ¢(A), for n € N consider the basic open
set R, U {oco} containing oco.

@ Note {n} x N e U, = f(n,0).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ It is easily seen that cly(A) = Aand cly(A) = AU {£o0}.
Thus A C ¢(A) C AU {£o0}.

@ To see that co € ¢(A), for n € N consider the basic open
set R, U {oco} containing oco.

@ Note {n} x N e U, = f(n,0).
@ Since {n} x N C R, U {oc}, we have R, U {cc} € U,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ It is easily seen that cly(A) = Aand cly(A) = AU {£o0}.
Thus A C ¢(A) C AU {£o0}.

@ To see that co € ¢(A), for n € N consider the basic open
set R, U {oco} containing oco.

@ Note {n} x N e U, = f(n,0).
@ Since {n} x N C R, U {oc}, we have R, U {cc} € U,
e Thus R, U {00} N A # 2 and o € c(A).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ It is easily seen that cly(A) = Aand cly(A) = AU {£o0}.
Thus A C ¢(A) C AU {£o0}.

@ To see that co € ¢(A), for n € N consider the basic open
set R, U {oco} containing oco.

@ Note {n} x N e U, = f(n,0).

@ Since {n} x N C R, U {oc}, we have R, U {cc} € U,

e Thus R, U {00} N A # 2 and o € c(A).

@ As SN ({n} x N= g for all n € N, we have —oco & c(A).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Example (Con't)

@ It is easily seen that cly(A) = Aand cly(A) = AU {£o0}.
Thus A C ¢(A) C AU {£o0}.

@ To see that co € ¢(A), for n € N consider the basic open
set R, U {oco} containing oco.

@ Note {n} x N e U, = f(n,0).

@ Since {n} x N C R, U {oc}, we have R, U {cc} € U,

e Thus R, U {00} N A # 2 and o € c(A).

@ As SN ({n} x N= g for all n € N, we have —oco & c(A).
@ Thus, ¢(A) = AU {0} and

cl(A) # c(A) # clp(A).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

The invariants aL’'(X) and t:(X)

Recall:

Definition

For a space X, aL(X) is defined as

alLc(X) = sup{aL(C, X) : Cis closed} + Rg

A new cardinal invariant:
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

The invariants aL’'(X) and t:(X)

Recall:

Definition

For a space X, aL(X) is defined as

alLc(X) = sup{aL(C, X) : Cis closed} + Rg

A new cardinal invariant:

Definition

For a space X, define aL’(X) as

al'(X) = sup{aL(C, X) : Cis c-closed} + N
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Proposition
For a space X,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Proposition
For a space X,
(@) aL(X) < al'(X) < aL¢(X) < L(X), and
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Proposition
For a space X,
(@) aL(X) < al’(X) < alL¢(X) < L(X), and
(b) aL'(X) < L(X) < L(X).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Proposition
For a space X,
(@) aL(X) < al’(X) < alL¢(X) < L(X), and
(b) aL'(X) < L(X) < L(X).

e al/(X) < L(X) follows from the fact that L(X) is hereditary
on c-closed subsets.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Definition

For a space X, the c-tightness of X, t;(X), is defined as the
least cardinal s such that if x € ¢(A) for some x € X and
A C X, then there exists B € [A]=" such that x € ¢(B).
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

Definition

For a space X, the c-tightness of X, t;(X), is defined as the
least cardinal s such that if x € ¢(A) for some x € X and

A C X, then there exists B € [A]=" such that x € ¢(B).

Example

Note that {(kw) = R and f;(kw) = {(fw) = ¢. This shows that
t(kw) and t:(xw) are not equal.
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

For a space X, the c-tightness of X, t;(X), is defined as the
least cardinal s such that if x € ¢(A) for some x € X and

A C X, then there exists B € [A]=" such that x € ¢(B).

Note that {(kw) = R and f;(kw) = {(fw) = ¢. This shows that
t(kw) and t:(xw) are not equal.

Proposition

For any space X,
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

For a space X, the c-tightness of X, t;(X), is defined as the
least cardinal s such that if x € ¢(A) for some x € X and

A C X, then there exists B € [A]=" such that x € ¢(B).

Note that {(kw) = R and f;(kw) = {(fw) = ¢. This shows that
t(kw) and t:(xw) are not equal.

Proposition

For any space X,
@ t(X) < x(X), and
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U, the operator ¢, and the invariants Z(X), al’(X) and tz(X)

For a space X, the c-tightness of X, t;(X), is defined as the
least cardinal s such that if x € ¢(A) for some x € X and

A C X, then there exists B € [A]=" such that x € ¢(B).

Note that {(kw) = R and f;(kw) = {(fw) = ¢. This shows that
t(kw) and t:(xw) are not equal.

Proposition

For any space X,
@ t(X) < x(X), and
o if X is regular then t(X) = t(X).
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A closing-off argument

Proposition
For any space X and for all x # y € X there exist open sets U
and V suchthatxe U,y e V,;andUN V = 2.

The above is formally stronger than the usual definition of
Hausdorff.
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A closing-off argument

Proposition

For any space X and for all x # y € X there exist open sets U
and V suchthatxe U,y e V,;andUN V = 2.

The above is formally stronger than the usual definition of
Hausdorff.

Proposition

If X is a space and c(X) < k, then for all x € X there exists a
family V of open sets such that |V| < k and

x}=v=[cV=)c)

Vev vev
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A closing-off argument

Proposition

If X is a space and A C X, then

[C(A)] < A[ECWE0 < |ApND0),

Compare the above with:

IcIA| < |A|TX0¥e(X) < A%,
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A closing-off argument
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A closing-off argument

@ Let k = t:(X)1ye(X). There exists a family V of open sets
such that |V4| < k and

X}=(Vx= ) V=) c(V).

Vevy Vevy

Ol
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A closing-off argument

@ Let k = t:(X)1ye(X). There exists a family V of open sets
such that |V4| < k and

X}=(Vx= ) V=) c(V).

Vevy Vevy

@ As t;(X) < &, for all x € ¢(A) there exists A(x) € [A]=F
such that x € ¢(A(x)).

Ol
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A closing-off argument

@ Let k = t:(X)1ye(X). There exists a family V of open sets
such that |V4| < k and

X}=(Vx= ) V=) c(V).

Vevy Vevy

@ As t;(X) < &, for all x € ¢(A) there exists A(x) € [A]=F
such that x € ¢(A(x)).

o Define ¢ : c(A) — [[AI=*]=" by

d(x) ={VNAKX): VeV

<K

Observe that ¢(x) € [[A]="]
]
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A closing-off argument
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A closing-off argument

@ Fix x € ¢(A). It is straightforward to show that
x € c(VNA(x)) forall V e Vy.

Ol
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A closing-off argument

@ Fix x € ¢(A). It is straightforward to show that
x € c(VNA(x)) forall V e Vy.

@ Thus,

{xrc ) eVnAx) < () e(V) ={x}

VeVy VeVyx

and

{x}= [ e(VnAXx)).

Vevy

Ol
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A closing-off argument

@ Fix x € ¢(A). It is straightforward to show that
x € c(VNA(x)) forall V e Vy.

@ Thus,

{xyc ) e(VnAx) c () cV) = {x}

VeVy VeVyx

and

{x}= [ e(VnAXx)).

Vevy

@ This shows ¢ is one-to-one and |c(A)| < |A|".

Ol
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A closing-off argument

Theorem (Hodel)

Let X be a set, k be an infinite cardinal, d : P(X) — P(X) an
operator on X, and for each x € X let {V(«a,X) : a« < k} be a
collection of subsets of X. Assume the following:

Then | X| < 2.
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A closing-off argument

Theorem (Hodel)

Let X be a set, k be an infinite cardinal, d : P(X) — P(X) an
operator on X, and for each x € X let {V(«a,X) : a« < k} be a
collection of subsets of X. Assume the following:

(T) (tightness condition) if x € d(H) then there exists AC H
with |A| < k such that x € d(A);

Then | X| < 2.
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A closing-off argument

Theorem (Hodel)

Let X be a set, k be an infinite cardinal, d : P(X) — P(X) an
operator on X, and for each x € X let {V(«a,X) : a« < k} be a
collection of subsets of X. Assume the following:

(T) (tightness condition) if x € d(H) then there exists AC H
with |A| < k such that x € d(A);

(C) (cardinality condition) if A C X with |A| < k, then
|d(A)] <27,

Then | X| < 2.
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A closing-off argument

Theorem (Hodel)

Let X be a set, k be an infinite cardinal, d : P(X) — P(X) an
operator on X, and for each x € X let {V(«a,X) : a« < k} be a
collection of subsets of X. Assume the following:

(T) (tightness condition) if x € d(H) then there exists AC H
with |A| < k such that x € d(A);

(C) (cardinality condition) if A C X with |A| < k, then
|d(A)| < 2%;

(C-S) (cover-separation condition) if H #+ @, d(H) C H, and

g ¢ H, then there exists A C H with |A| < k and a function
f:A— ksuchthatH C | J,ca V(f(x), x) and
q ¢ Uxea V(1(x), X).

Then | X| < 2.

Nathan Carlson A Cardinality Bound for Hausdorff Spaces



A closing-off argument

Using the operator c in place of the operator d in Hodel’s
theorem, we obtain:

Main Theorem (C., Porter, 2016)

If X is Hausdorff then

IX| < 23 COR(X0(X) < pal! (X)x(X) < LX),

Compare the above to the following:
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A closing-off argument

Using the operator c in place of the operator d in Hodel’s
theorem, we obtain:

Main Theorem (C., Porter, 2016)

If X is Hausdorff then

IX| < 23 COR(X0(X) < pal! (X)x(X) < LX),

Compare the above to the following:

Theorem (Bella,Cammaroto)
If X is Hausdorff then | X| < 28Le(X)t(X)ve(X),
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A closing-off argument

As al’(X) < Z(X) and Z(X) = Ng for an H-closed space X, it
follows that:

Corollary (Dow, Porter 1982)
If X is H-closed then | X| < 2ve(X),
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A closing-off argument

We can now identify a property P of a Hausdorff space X that
generalizes both the H-closed and Lindeldf properties such that
|X| < 2x(X) for spaces with property P:

P = for every open cover V of X there is W € [V]=* such that
x=w
wew
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A closing-off argument

Questions

Are Z(X ) and al’(X) independent of the choice of open
ultrafilter assignment?

Given relationships between cardinality bounds for general
Hausdorff spaces and bounds for homogeneous spaces, we
can ask:
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A closing-off argument

Questions

Are Z(X ) and al’(X) independent of the choice of open
ultrafilter assignment?

Given relationships between cardinality bounds for general
Hausdorff spaces and bounds for homogeneous spaces, we
can ask:

If X is a homogeneous Hausdorff space, is

X[ < 22/ (O(X)pet(X)
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A closing-off argument

Thank you!
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A closing-off argument

[§ C., Jack Porter, On the Cardinality of Hausdorff and
H-closed Spaces, pre-print.
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