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Introduction

It is known, that an epi-reflective hull L([0, 1]) of the unit segment
I = [0, 1] in a category Tych consists of all closed subspaces of powers of
[0, 1]. Stone–Čech compactification βX of Tychonoff space X is a
projective object in L([0, 1]), i.e. βX is the essentially unique compactum
containing X densely such that each continuous mapping f : X → K
(K ∈ L([0, 1])) admits a continuous extension βf : βX → K , or
β : X → βX is an epi-reflection and homeomorphic embedding
[Gillman–Jerison, 1960; Walker, 1974; Engelking, 1989]. The unique
uniformity of compactum βX induces on X Stone-Čech uniformity uβ,
whose base consists of all finite cozero coverings (cozero covering consists
of cozero sets). The uniformity uβ is a precompact reflection [Isbell, 1964]
of many uniformities on X (for example, Nachbin uniformity or Shirota
uniformity) and among them there is a maximal uniformity uf being a fine
uniformity, whose base consists of all locally finite cozero coverings
[Gillman–Jerison, 1960; Engelking, 1989].
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For Tychonoff space X zero-sets Z(X ) of all continuous functions form
separating, nest-generated intersection ring (s.n.–g.i.r.)[Steiner A. K.,
Steiner E.F., 1970] and Wallman compactification ω(X ,Z(X )) is
Stone-Čech compactification βX [Gillman–Jerison, 1960]. An elements of
βX are all z−ultrafilteres (≡ maximal centered systems of Z(X )). All
countably centered z−ultrafilteres part of βX forms Hewitt extension υX
and another part of βX of all locally finite additive z−ultrafilteres forms
Dieudonne completion µX [Gillman–Jerison, 1960; Curzer–Hager, 1976]
and υX is a projective object in the epi-reflective hull L(R) (≡ all closed
subspaces of powers of R), i.e. υX is the essentially unique realcompact
space containing X densely such that each continuous mapping f : X → Y
(Y ∈ L(R)) admits a continuous extension υf : υX → Y , or υ : X → υX
is an epi-reflection and homeomorphic embedding, µX is a projective
object in the epi-reflective hull L(M) (≡ all closed subspaces of products
from a class M), where M is a class of all metric spaces [Franklin, 1971;
Herrlich, 1971; Hager, 1975], i.e. µX is the essentially unique Dieudonne
complete space containing X densely such that each continuous mapping
f : X → Y (Y ∈ L(M)) admits a continuous extension µf : µX → Y , or
µ : X → µX is an epi-reflection and homeomorphic embedding.
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Samuel compactification suX of a uniform space uX is a projective object
in the epi-reflective hull L([0, 1]) in a category Unif , i.e. suX is the
essentially unique compactum containing X densely such that each
uniformly continuous mapping f : uX → K (K ∈ L([0, 1])) admits a
continuous extension suf : suX → K , or it is an epi-reflection
su : uX → suX , at that it is not a uniform embedding [Isbell, 1964]. A
compactum suX is the result of completion of X with respect to
precompact reflection up of uniformity u (a base of up consists of all finite
uniform coverings of uniformity u [Isbell, 1964]). It is known that there is
not always the maximal uniformity for which up is its a precompact
reflection [Ramm–Švarc, 1953].
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Questions

Professor K.Kozlov asked: What does uniformity correspond to β−like
compactification of Tychonoff space in sense [Mrówka, 1973]? Does it
exist a maximal uniformity, for which this precompact uniformity is a
precompact reflection?
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Preliminaries

Any β−like compactification can be constructed as Wallman
compactification by a base, which is s.n.–g.i.r. in sense [Steiner A. K.,
Steiner E.F., 1970]. For any uniform space uX zero-sets Zu of all
uniformly continuous functions form a normal base in sense [Frink, 1964]
and Wallman compactification ω(X ,Zu) [Frink, 1964; Aarts–Nishiura,
1993; Iliadis, 2005] is β−like compactification [Chekeev, 2016], which is
denoted by βuX . Hence Zu is s.n.–g.i.r. A uniformity of compactum βuX
induces on X precompact uniformity uzp , which is called Wallman
precompact uniformity, and it has a base of all finite u−open coverings
[Chekeev, 2016]. A maximal uniformity, for which uzp is precompact
reflection, is a coz−fine uniformity uzcf in sense [Z.Frolik, 1975] and, we
note, it has a base of all locally finite coz−additive u−open coverings.
In this talk for uniform space uX a various kinds of completeness by
zu−ultrafilteres on Zu are determined, corresponding to the well-known
topological concepts, such as Stone-Čech compactification βX , Hewitt
extension υX and Dieudonne completion µX .
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For any uniform space uX U(uX ) (U∗(uX )) be a set of all (bounded)
uniformly continuous functions, Zu be a zero-sets of all functions of
U∗(uX ) or U(uX ), CZu = {X\Z : Z ∈ Zu} be a set of cozero-sets. Every
set of Zu (CZu) is said to be u−closed (u−open) [Charalambous, 1975]
It is known, that:

Proposition 1.[M.G. Charalambous, 1975]

(1) Zu is a base of closed set topology of a uniform space uX .

(2) Zu is a normal base in sense [Frink, 1964].

(3) CZu is a base of open set topology of a uniform space uX .

Definition 2.[Z. Frolik, 1975; M.G. Charalambous, 1975, 1991]

A mapping f : uX → vY between uniform spaces is said to be a
coz−mapping, if f −1(CZv ) ⊆ CZu (or f −1(Zv ) ⊆ Zu) [Z. Frolik, 1975].
If Y = R or Y = I , then the coz−mapping f : uX → R is said to be a
u−continuous function and the coz−mapping f : uX → I is said to be a
u−function [Charalambous, 1975, 1991].
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We denote by Cu(X ) (C ∗u (X )) the set of all (bounded) u−continuous
functions on a uniform space uX and it is known Cu(X ) forms an algebra
with inversion [Chekeev, 2016] in sense [Hager-Johnson, 1968; Hager,
1969; Isbell, 1958].

Definition 3.

A maximal centered system of u−closed sets on a uniform space uX is
said to be zu−ultrafilter.

Below by means of zu−ultrafilteres, satisfying additionally to the properties
of being countably centered and locally finite additivity the concepts of
zu−completeness, R−zu−completeness and weakly zu−completeness of a
uniform spaces are introduced, their basic properties are established, which
allow to obtain their characterizations in a category ZUnif , whose objects
are uniform spaces, and morphisms are coz−mappings.
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Let’s introduce a concept of zu−completeness.

Definition 4.

A uniform space uX is said to be zu−complete, if every zu−ultrafilter
converges.

Proposition 5.

A uniform space uX is compact iff it is zu−complete.

As it is above mentioned in Proposition 1, Zu is a normal base and
Wallman compactification ω(X ,Zu) is β−like compactification in sense
[Mrówka, 1973] and it has the next property is similar to Stone–Čech
compactification.
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Main Results

Theorem 6.

For every uniform space uX Wallman compactification ω(X ,Zu) = βuX is
β−like compactification with the next equivalent properties:

(I) Every coz−mapping f from uX into any compactum K has a
continuous extension βuf from βuX into K .

(II) uX is C ∗u−embedded in βuX .

(III) Any two disjoint u−closed sets in uX have disjoint closures in βuX .

(IV) For any two u−closed sets Z1 and Z2 in uX the equality
[Z1 ∩ Z2]βuX = [Z1]βuX ∩ [Z2]βuX holds.

(V) Distinct zu−ultrafilters on uX have distinct limits in βuX .

The compactification βuX is unique in the next sense: if a
compactification Y of uX satisfies anyone of listed conditions, then there
exists a homeomorphism of βuX onto Y that leaves X pointwise fixed.
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Main Results

Under Cu(C ∗u )−embedding we will understand the next:

Definition 7.

Let X be a subspace of a Tychonoff space Y and u be a uniformity on
X , v be a uniformity on Y such that Zv ∧ X = Zu. The uniform space
uX is said to be Cu(C ∗u )−embedded in the uniform space vY , if any
function of Cu(X ) (C ∗u (X )) can be extended to a function in Cv (Y )
(C ∗v (Y )).

Asylbek A. Chekeev1,*, Tumar J. Kasymova1, Taalaibek K. Dyikanov2 (1Kyrgyz National University named after J.Balasagyn, * Kyrgyz-Turkish Manas University, 2Kyrgyz State Law Academy,Bishkek, Kyrgyz Republic)Ultrafilter-completeness on a zero-sets July 25–29, 2016 11 / 39



Main Results

We introduce a concept of R−zu−completeness.
If p is zu−ultrafilter and ∩n∈NFn 6= ∅ for any subfamily {Fn}n∈N of p, then
p is said to be countably centered zu−ultrafilter. We note that countably
centered zu−ultrafilter is closed under countable intersections.

Definition 8.

A uniform space uX is said to be R−zu−complete, if every countably
centered zu−ultrafilter converges.
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Problem

Naturally a problem arises: To characterize R−zu−complete uniform
spaces. This problem is connected with Wallman realcompactification in
sense [Steiner A.K., Steiner E.F., 1970].
As it is known:

Proposition 9. [Steiner A.K.,Steiner E.F., 1970]

Wallman realcompactification υ(X ,Zu) = υuX of a uniform space uX is a
subspace of βuX consisting of the set of all countably centered
zu−ultrafilteres on Zu.
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Main Results

For Wallman realcompactification υuX of a uniform space uX the next
characterizations hold.

Theorem 10.

Every uniform space uX has the Wallman realcompactification υuX ,
contained in a β−like compactification βuX with the next equivalent
properties:

(I) Every coz−mapping f from uX into any R−zu−complete space νR
has a continuous coz−extension f̃ from υuX into νR.

(II) uX is Cu−embedded in υuX .

(III) If a countable family of u−closed sets in uX has empty intersection,
then their closures in υuX have empty intersection.
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Continuation of Theorem 10.

(IV) The equality ∩n∈N[Zn]υuX = [∩n∈NZn]υuX holds for any countable
family of u−closed sets {Zn}n∈N in uX .

(V) Every point of υuX is the limit of a unique countably centered
zu−ultrafilter.

(VI) υuX is a completion of X with respect to a uniformity uzω (uzω has a
base of all countable u−open coverings).

(VII) υuX is a completion of X with respect to a uniformity uzc (uzc is the
smallest uniformity for which all functions from Cu(X ) are uniformly
continuous).

Wallman realcompactification υuX is unique in the next sense: if a
uniform space vY is a realcompactification of uX satisfies anyone of listed
conditions, then there exists a coz−homeomorphism of υuX onto vY that
leaves X pointwise fixed.
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The next definition was given by [Z. Frolik, 1975].
Remind, that

Definition 11. [Z. Frolik, 1975]

A mapping f : uX → vY between uniform spaces is said to be a
coz−homeomorphism, if f is a coz−mapping of uX onto vY in a
one-to-one way, and the inverse mapping f −1 : vY → uX is a
coz−mapping. A uniform spaces uX and vY are coz−homeomorphic, if
there exists a coz−homeomorphism of uX onto vY .
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Main Results

The next theorem demonstrates a relation between R−zu−completeness
of uniform space uX and Wallman realcompactification υuX .

Theorem 12.

For a uniform space uX the next conditions are equivalent:

(1) uX is R−zu−complete;

(2) X is complete with respect to a uniformity uzω (uzω has a base of all
countable u−open coverings);

(3) X is complete with respect to a uniformity uzc (uzc is the smallest
uniformity for which all functions from Cu(X ) are uniformly
continuous).

(4) uX = υuX ;

(5) uX is coz−homeomorphic to a closed uniform subspace of a power of
uRR.
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Main Results

We list the next properties of R−zu−complete uniform spaces.

Theorem 13.

(1) If X is a realcompact and non-Lindelöf space, then there exists a
uniformity u on X such that uX is not R−zu−complete. The uniform
space uX is Cu−embedded, but it is not C−embedded in υuX .

(2) A Tychonoff space X is Lindelöf if and only if uX is R−zu−complete
for any uniformity u on X .

(3) Every open uniform subspace of the ℵ0−bounded metrizable uniform
space is R−zu−complete.

(4) A closed uniform subspace of a R−zu−complete space is
R−zu−complete.

(5) A product of any collection of R−zu−complete spaces is
R−zu−complete if and only if every factor is R−zu−complete.
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Continuation of Theorem 13

(6) A limit of an inverse system consisting of R−zu−complete spaces and
”short” projections, being coz−mappings, is R−zu−complete.

(7) Let {utXt : t ∈ T} be a collection of R−zu−complete uniform
subspaces of R−zu−complete space uX , i.e. ut = u|Xt for any t ∈ T .
Then the intersection ∩{Xt : t ∈ T} = Y , equipped by the uniformity
v = u|Y , is R−zu−complete.

(8) If f : uX → vY is coz−perfect mapping of uX onto R−zu−complete
uniform space vY , then uX is R−zu−complete.

(9) An u−open subspace of R−zu−complete space uX is
R−zu−complete.

(10) R−zu−complete and Cu−embedded subspace is closed.
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Main Results

Under coz−perfect mapping we will understand the next:

Definition 14.

A coz−mapping f : uX → vY between uniform spaces is said to be
coz−perfect, if 1) f is closed, and 2) f is compact, i.e. f −1(y) is a
compactum in X for any point y ∈ Y .

We note, that every coz−mapping f : uX → vY has β−like extension
βuf : βuX → βvY [Chekeev, 2016].
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In the category ZUnif coz−perfect mappings have the next inner and
categorical characterizations.

Theorem 15.

Let uX and vY be a uniform spaces. Then for coz−mapping
f : uX → vY the next conditions are equivalent:

(1) f is coz−perfect.

(2) If p is zu−ultrafilter on uX and prefilter f (p) = {f (Z ) : Z ∈ p} is
converging to point y ∈ Y , then p is converging to point x ∈ f −1(y).

(3) For extension mapping βuf : βuX → βvY a remainder βuX \ X
transfers to a remainder βvY \ Y , i.e. βuf (βuX \ X ) ⊂ βvY \ Y .

(4) Square

is pullback in category ZUnif , where iX and iY are
coz−homeomorphic embeddings.
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Main Results

By analogy with work [Curzer-Hager, 1976] we introduce a concept of
locally finitely additive zu−ultrafilter.

Definition 16.

Let p be a zu−ultrafilter and co(p) = {X \ Z : Z ∈ p} be an u−open
family. A family co(p) is said to be locally finitely additive, if
∪α ∈ co(p) whenever α ⊂ co(p) and α is locally finite. Every
zu−ultrafilter p such that co(p) is locally finitely additive, is said to be
weakly Cauchy zu−ultrafilter.

The name of weakly Cauchy zu−ultrafilter in the Definition 16 is due to
that every Cauchy zu−ultrafilter with respect uniformity uzcf satisfies to the
locally finitely additive property and it is countably centered and vise versa.

Definition 17.

A uniform space uX is said to be weakly zu−complete, if every weakly
Cauchy zu−ultrafilter converges.
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Main Results

Wallman completeness of uniform spaces will be correspond to the weakly
zu−completeness.

Definition 18.

Wallman completion µuX of a uniform space uX is the subspace of βuX
consisting of the set of all weakly Cauchy zu−ultrafilteres on Zu.
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Main Results

The next theorem characterizes Wallman completion µuX of uniform
space uX .

Theorem 19.

Every uniform space uX has Wallman completion µuX , contained in a
β−like compactification βuX with the next equivalent properties:

(I) Every coz−mapping f from uX into any weakly zu−complete uniform
space vY has a coz−mapping extension f̃ from µuX into vY .

(II) Every coz−mapping f from uX into an arbitrary metric uniform space
uρM has a coz−mapping extension f̃ from µuX into uρM.

(III) If {Zi}i∈I is a family of u−closed sets with {X \ Zi}i∈I locally finite,
and ∩i∈IZi = ∅, then ∩i∈I [Zi ]µuX = ∅.
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Continuation of Theorem 19.

(IV) If {Zi}i∈I is a family of u−closed sets with {X \ Zi}i∈I locally finite,
then ∩i∈I [Zi ]µuX = [∩i∈IZi ]µuX .

(V) Every point of µuX is the limit of unique weakly Cauchy
zu−ultrafilter.

(VI) µuX is a completion of X with respect to a uniformity uzcf (uzcf has a
base of all locally finite coz−additive u−open coverings).

Wallman completion µuX is unique in the next sense: If a uniform space
vY is an extension of uX satisfies anyone of listed conditions, then there
exists a coz−homeomorphism of µuX onto vY that leaves X pointwise
fixed.
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Main Results

Below we have the next characterizations of weakly zu−complete uniform
spaces.

Theorem 20.

For a uniform space uX the next conditions are equivalent:

(1) uX is weakly zu−complete;

(2) X is complete with respect to a uniformity uzcf (uzcf has a base of all
locally finite coz−additive u−open coverings);

(3) uX = µuX ;

(4) uX is coz−homeomorphic to a closed uniform subspace of metric
uniform spaces product.
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The next properties of weakly zu−complete uniform spaces hold.

Theorem 21.

(1) Every metric uniform space is a weakly zu−complete.

(2) A closed uniform subspace of a weakly zu−complete space is a weakly
zu−complete.

(3) A product of any collection of a weakly zu−complete spaces is a
weakly zu−complete iff every factor is a weakly zu−complete.

(4) A limit of an inverse system consisting of a weakly zu−complete
spaces and ”short” projections, being coz−mappings, is a weakly
zu−complete.

(5) Let {utXt : t ∈ T} be a collection of a weakly zu−complete uniform
subspaces of a weakly zu−complete space uX , i.e. ut = u|Xt for any
t ∈ T . Then the intersection ∩{Xt : t ∈ T} = Y , equipped by the
uniformity v = u|Y , is a weakly zu−complete.

(6) If f : uX → vY is coz−perfect mapping of uX onto a weakly
zu−complete uniform space vY , then uX is a weakly zu−complete.
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Conclusions

All of the foregoing leads us to the following conclusions in the category
ZUnif .
Every compactum (or zu−complete uniform space) is a closed subspace of
power of I = [0, 1], hence a class K of compacta in the category ZUnif
coincides with epi-reflective hull L([0, 1]) [Franklin, 1971; Herrlich, 1971;
Hager, 1975]. For any uniform space uX β−like compactification βuX is a
projective object in L([0, 1]), i.e. βuX is the essentially unique compactum
containing X densely such that each coz−mapping f : uX → K
(K ∈ L([0, 1])) admits a continuous extension βuf : βuX → K , or
βu : uX → βuX is an epi-reflection and coz−homeomorphic embedding.
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Every realcompact space (or R−zu−complete uniform space) is a closed
subspace of power of uRR, hence a class R of realcompact spaces in the
category ZUnif coincides with epi-reflective hull L(uRR) [Franklin, 1971;
Herrlich, 1971; Hager, 1975]. For any uniform space uX Wallman
realcompactification υuX is a projective object in L(uRR), i.e. υuX is the
essentially unique realcompact space (or R−zu−complete uniform space)
containing X densely such that each coz−mapping f : uX → vY
(vY ∈ L(uRR)) admits a coz−mapping extension υuf : υuX → vY , or
υu : uX → υuX is an epi-reflection and coz−homeomorphic embedding.
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Let M be a class of all metric uniform spaces. Every weakly zu−complete
uniform space is a closed uniform subspace of product from the class M,
hence a class of all weakly zu−complete uniform spaces in the category
ZUnif coincides with epi-reflective hull L(M) [Franklin, 1971; Herrlich,
1971; Hager, 1975]. For any uniform space uX Wallman completion µuX
is a projective object in L(M), i.e. µuX is the essentially unique weakly
zu−complete uniform space containing X densely such that each
coz−mapping f : uX → vY (vY ∈ L(M)) admits a coz−mapping
extension µuf : µuX → vY , or µu : uX → µuX is an epi-reflection and
coz−homeomorphic embedding.
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From Theorems 10, 12, 13 it follows that for every f ∈ Cu(X ) we have an
extension mapping βuf : βuX → suRR, where suRR is Samuel
compactification of uRR, and

υuX = ∩{(βuf )−1(R) : f ∈ Cu(X )}.

From Theorems 19, 20, 21 it follows that for every coz−mapping
f : uX → uρM, uρM ∈M, we have an extension mapping
βuf : βuX → suρM, where suρM is Samuel compactification of uρM and

µuX = ∩{(βuf )−1(M) : f : uX → uρM is a coz−mapping, uρM ∈M}.
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Hence for any uniform space uX it holds

X ⊂ µuX ⊂ υuX ⊂ βuX .

If u = uf is a fine uniformity, then for Tychonoff spaces the well-known
chain [Morita, 1970; Curzer–Hager, 1976] of inclusions holds:

X ⊂ µX ⊂ υX ⊂ βX ,

where µX is Dieudonne completion, υX is Hewitt extension, βX is
Stone–Čech compactification.
We note, that epi-reflective hull uRR in category Unif coincides with class
of realcomplete spaces in sense [Hušek–Pulgarin, 2015].
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In case u = uf is a fine uniformity, we have the next correspondences table
of categories ZUnif and Tych.

ZUnif Tych

zu−completeness z−completeness⇔compactness

R−zu−completeness R− z−completeness⇔realcompactness

weakly zu−completeness weakly z−completeness

m

Dieudonne completeness
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Thanks a lot for attention.
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