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Definition

A group G is topologizable if G admits a non-discrete Hausdorff
group topology.

Problem 1. [Markov 1944]

Does there exist an infinite non-topologizable group ?

Markov called a subset S of G unconditionally closed, if S is closed
in every Hausdorff group topology of G . In these terms:
G is non-topologizable iff G \ {e} is unconditionally closed.

Definition (Shakhmatov-D.D. 2003)

The Markov topology MG of a group G has as closed sets
precisely all unconditionally closed sets of G .

Clearly, MG is the infimum of all Hausdorff group topologies on G ,
so MG is T1, all left and right shifts, as well as the inverse
operation, are continuous (MG is not a group topology in general).
G is non-topologizable iff MG is discrete. So to resolve Problem 1,
one needs to produce an infinite group G with discrete MG .
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Markov’s problem on connected group topologies
Markov noticed that for every proper closed subgroup H of a
connected Hausdorff group G has index [G : H] = |G/H| ≥ c, as
the homogeneous space G/H is Tychonov, non-trivial and
connected. This is why he asked
Problem 2. [Markov 1945]

If all proper MG -closed subgroups of a group G have index at least
c, does G admit a connected Hausdorff group topology

The question was negatively answered by Pestov and by Remus for
arbitrary groups. In the abelian case Markov’s conditions becomes
also a sufficient one:

Theorem (Shakhmatov-D.D., Adv. Math. vol. 286, 2016)

For an abelian group G the following are equivalent:
(a) G admits a connected Hausdorff group topology;
(b) all proper MG -closed subgroups of a group G have index at
least c;
(c) for every m ∈ N, either mG = {0} or |mG | ≥ c.

Here mG = {mx : x ∈ G} is a subgroup of G .
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Algebraic sets
In order to approximate better the unconditionally closed sets
Markov considered further properties of a subset X of a group G :

(a) elementary algebraic if there exist an integer n > 0, elements
a1, . . . , an ∈ G and ε1, . . . , εn ∈ {−1, 1}, such that
X = {x ∈ G : xε1a1xε2a2 . . . an−1xεnan = 1},

(b) algebraic if X is an intersection of finite unions of elementary
algebraic subsets of G .

Example

Every centralizer cG (a) = {x ∈ G : axa−1x−1 = 1} is an
elementary algebraic set, so the center Z (G ) is an algebraic set.

Obviously, algebraic sets are unconditionally closed.
Markov proved that these two notions coincide for countable
groups and asked whether this remains true in general:

Problem 3. [Markov 1944]

Are unconditionally closed sets always algebraic sets ?

A second topology may help to better handle this problem.
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The Zariski topology
For a group G the family AG of all algebraic sets of G contains all
finite subsets of G and AG is closed under finite unions and
arbitrary intersections.

Definition (Bryant 1976, Baumslag, Myasnikov and Remeslennikov)

The Zariski topology ZG of a group G has as closed sets precisely
all algebraic sets of G .

Markov did not define implicitly the topology ZG , so he did not
name it either. R. Bryant, defined explicitly ZG calling it the verbal
topology of G . The name Zariski topology was coined by
Baumslag, Myasnikov and Remeslennikov [1999], they developed a
sort of algebraic geometry over an abstract group G . They
extended the definition of the Zariski topology also to all finite
powers Gn of the group G .
Clearly, ZG is a T1 topology, ZG ≤MG and Markov’s Problem 3 is
equivalent to asking: is ZG = MG always true?
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The equality ZG = MG was proved by Markov for countable
groups and by Perel′man for abelian G , while a counterexample in
the general case is attributed to Hesse (these old results remained
unpublished).
Call a group G Z-discrete (resp., M-discrete), if ZG (resp., MG ) is
discrete. Analogously, define Z-compact, Z-Hausdroff, etc.

Example

(a) (Shelah [1979], under CH) There exists a M-discrete group.
(b) (Hesse, PhD Dissertation [1979]) There exists a M-discrete
group G that is not Z-discrete.
(c) (Sipacheva [arXiv:math/0605558, 2006]) A modification of
Shelah’s CH-example gives the same result.

Obviously, G is Z-discrete if and only if there exist
E1, . . . ,En ∈ EG such that E1 ∪ . . . ∪ En = G \ {eG}.
Ol′shanskij used an appropriate quotient of Adian group A(n,m) to
build a countable Z-discrete group G (the center Z (G ) 6= {eG} is
finite and ZG -open, so G is not torsion-free).
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Example

(a) Klyachko and Trofimov [2005] constructed a finitely
generated torsion-free Z-discrete group G .

(b) Trofimov [2005] proved that every group H admits an
embedding into a Z-discrete group.

(c) Trofimov [2005] found an infinite finitely generated
centreless Z-discrete group H = Aut(H) (negatively
answering Taimanov’s question on whether the infinite
automorphism groups are topologizable).

Shelah’s construction [1980]

An uncountable group G is MG -discrete whenever the following two
conditions hold:

(a) there exists m ∈ N such that Am = G for every subset A of G
with |A| = |G |;

(b) for every subgroup H of G with |H| < |G | there exist n ∈ N
and x1, . . . , xn ∈ G such that the intersection

⋂n
i=1 x−1i Hxi is

finite.
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The Markov–Zariski topology of abelian groups
For n ∈ N let G [n] = {x ∈ G : nx =0},an elementary algebraic set.

Theorem (Shakhmatov, DD, 2006)

MG = ZG for an abelian group G . Moreover, every non-empty
elementary algebraic set E has the form
E = a + G [n] = {x ∈ G : nx = na} for some a ∈ G and n ∈ N.
Every algebraic set is a finite union of elementary algebraic sets.

The non-trivial proof of MG = ZG will be discussed below.
If a ∈ E = {x ∈ G : nx = b}, then na = b, so the desired equality
holds, as nx = na yields n(x − a) = 0 and x − a ∈ G [n]. Moreover,
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The ZG -connected component cZ(G ) of an abelian group G
Call an abelian group G bounded, if mG = 0 for some m > 0,
unbounded otherwise. Let o(G ) be the smallest m > 0 with
mG = 0, if G is bounded. Otherwise, let o(G ) = 0.
Following Givens and Kunen, let eo(G ) be the least m > 0 such
that mG is finite, in case G is a bounded abelian group.
Otherwise, let eo(G ) = 0. If o(G ) > 0, then eo(G )|o(G ).

Theorem (Shakhmatov, DD 2010)

The connected component cZ(G ) of (G ,Z) is a closed finite index
subgroup. More precisely, cZ(G ) = G [m], where m = eo(G ).

Consequently,
(a) cZ(G ) coincides with the intersection of all (finitely many)
Z-closed subgroups of finite index.
(b) (G ,Z) is connected iff eo(G ) = o(G ) (i.e., mG is either infinite
or mG = {0} for any m ∈ N). In particular, (G ,Z) is connected if
G is unbounded.
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The precompact Markov topology
A Hausdorff group topology τ on a group G is precompact, if the
completion of (G , τ) is compact.

Definition (Shakhmatov, DD, 2006)

For a group G define the precompact Markov topology by

PG = inf{all precompact group topologies on G}

Clearly, ZG ⊆MG ⊆ PG are T1 topologies. Moreover, PG is
discrete iff G admits no precompact group topologies.

Theorem (Shakhmatov, DD, 2006)

If G is abelian, then ZG = MG = PG .

The equality ZG = MG for abelian G was proved also by
Sipacheva [2006] in a different way.
(G ,ZG ) is (hereditarily) compact for every abelian group G (so G
is also M-compact and P-compact). In particular, G is not
P-discrete.
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P-discrete groups
The von Neumann kernel n(G ) of a topological group G is the
subgroup of all points of G where all continuous homomorphisms
of G → K , with K a compact group, vanish. According to von
Neumann, a group G is called

(a) minimally almost periodic (briefly, MinAP), if every
homomorphism to an arbitrarily chosen compact group K is
trivial (i.e., n(G ) = G ).

(b) maximally almost periodic (briefly, MAP), if n(G ) = {e}.
Clearly, a (discrete) group G is P-discrete iff G is not MAP, so
examples of P-discrete groups are provided by all MinAP groups.

Example (von Neumann and Wiener: SL2(R) is MinAP)

Theorem (Toller-DD, Topology Appl. 2013)

Every divisible solvable non-abelian group is P-discrete. Hence,
the Heisenberg group HK is P-discrete, when K is a field with
char K = 0 (ZHK

< PHK
, as ZHK

�Z(HK )=ZZ(HK ) is co-finite).
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Markov’s problem on potential density

Definition (Markov, Izv. AN SSSR 1945)

A subset A of a group G is potentially dense in G if there exists a
Hausdorff group topology T on G such that A is T -dense in G .

Example (Markov)

Every infinite subset of Z is potentially dense in Z.
By Weyl’s uniform disitribution theorem for every infinite A = (an)
in Z there exists α ∈ R such that (anα) is uniformly distributed
modulo 1, so the subset (anα) of R/Z is dense in R/Z (so in 〈α〉 as
well). Now the topology T on Z induced by Z ∼= α ↪→ R/Z works.

Problem 4 [Markov]

Characterize the potentially dense subsets of an abelian group.

A hint. [two necessary conditions]

a potentially dense set is Zarisky-dense;

if G has a countable potentially dense set, then |G | ≤ 2c.
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Theorem (Tkachenko-Yaschenko, Topology Appl. 2002)

If an Abelian group with |G | ≤ c is either torsion-free or has
exponent p, then every infinite set of G is potentially dense.

Question [Tkachenko-Yaschenko]

Can this be extended to groups with |G | ≤ 2c?

The answer is (more than) positive:

Theorem (D. Shakhmatov - DD, Adv. Math. vol. 226, 2011)

For a countably infinite subset A of an Abelian group G TFAE:
(i) A is potentially dense in G ,
(ii) there exists a precompact Hausdorff group topology on G such
that A becomes T -dense in G ,
(iii) |G | ≤ 2c and A is Zarisky dense in G .

The proof if based on a realization theorem for the Zariski closure
by means of (metrizable) precompact group topologies.
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Z-Noetherian groups
A topological space X is Noetherian, if X satisfies the ascending
chain condition on open sets (or, equivalently, the minimal
condition on closed sets). Actually, a space is Noetherian iff all its
subspaces are compact (so an infinite Noetherian spaces are never
Hausdorff).
Linear groups are Z-Noetherian, as their topology is coarser than
the affine Zariski topology.

Theorem (Toller - DD, 2012)

A group G is Z-Noetherian iff every countable subgroup of G is
Z-Noetherian.

Since countable free groups are linear, one obtain to following
known result:

Corollary (Guba, Matem. Zam. 1986)

Every free group is Z-Noetherian.

Since every group is a quotient of a free group, this shows that the
quotient of a Z-Noetherian group need not be Z-Noetherian.
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Theorem (Toller - DD, 2012)

If N is a ZG -closed normal subgroup of a Z-Noetherian (resp.
Z-compact) group G, then also the quotient group G/N is
Z-Noetherian (resp. Z-compact).

For a direct product G =
∏

i∈I Gi , one has ZG ≤
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Z-Hausdorff and M-Hausdroff groups
If {Fi | i ∈ I} is a family of finite groups, and G =

∏
i∈I Fi , then

the product topology
∏

i∈I ZFi
is a compact Hausdorff group

topology, so

ZG ⊆MG ⊆ PG ⊆
∏
i∈I

ZFi
.

(a) G is Z-Hausdorff if and only if ZG = MG = PG =
∏

i∈I ZFi
.

(b) G is M-Hausdorff if and only if MG = PG =
∏

i∈I ZFi
.

Example (Toller, DD 2012)

If {Fi | i ∈ I} is a non-empty family of finite center-free groups,
and G =

∏
i∈I Fi , then ZG = MG = PG =

∏
i∈I ZFi

is a Hausdorff
group topology on G , so G is Z-Hausdorff and Z-compact.

Theorem (Gaughan, Proc. Nat. Acad. Sci. USA 1967)

For the permutation group S(X ) of an infinite set X , the
point-wise convergence topology Tp of S(X ) coincides with
MS(X ), So, S(X ) is M-Hausdorff.
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When ZG is a group topology
Here we consider a stronger condition on ZG and MG , that
ensures Z-Hausdorffness and M-Hausdorffness, resp.
Call a group G a Z-group (M-group), if ZG (MG , resp.) is a group
topology. Clearly, Z-groups are also M-groups.
The existence of an M-group G that it is not a Z-group (so
ZG 6= MG ) will provide a counterexample to Markov’s problem 3.

Definition (Döıtchinov/Choquet, Stephenson, Jr.; Gartside-Glyn)

A Hausdorff topological group (G , τ) is called

minimal if its topology cannot be properly weakened to
another Hausdorff group topology.

minimum (Hausdorff) group topology if it is contained in
every Hausdorff group topology on G .

(Minimum topologies are called also a-minimal by Megrelishvli-DD
[RPGT3] or Toller-DD [2012].)
Clearly, τ is a minimum group topology iff G is an M-group and
MG = τ .
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According to Gaughan’s Theorem, for an infinite set X , Tp is a
minimum topology on S(X ) (so, S(X ) is an M-group).
For a set X , let Sω(X ) be the subgroup of all f ∈ S(X ) with finite
support supp(f ) = {x ∈ X : f (x) 6= x}.
Confirming simultaneously a conjecture from Prodanov, Stoyanov,
DD [Topological groups, 1989] as well as a conjecture of
Shakhmatov, DD [OPiT2, 2006] Banakh, Guran and Protasov,
improved significantly Gaughan’s theorem:

Theorem (Banakh, Guran and Protasov, Topology Appl. 2012)

For every nonempty set X and a subgroup G of S(X ) containing
Sω(X ), one has ZG = MG = Tp �G (i.e., G is a Z-group).

In the sequel, H(X ) denotes the autohomeomorphism group of a
(compact) space X and τk its compact-open topology. For a
(discrete) set X and its one-point compactification αX the groups
(H(αX ), τk) and (S(X ), Tp) are topologically isomorphic. This
fact and the above theorem suggest to investigate when the groups
H(X ) are Z-groups.

Dikran Dikranjan Udine University, Italy The Zariski topology of a group



According to Gaughan’s Theorem, for an infinite set X , Tp is a
minimum topology on S(X ) (so, S(X ) is an M-group).
For a set X , let Sω(X ) be the subgroup of all f ∈ S(X ) with finite
support supp(f ) = {x ∈ X : f (x) 6= x}.
Confirming simultaneously a conjecture from Prodanov, Stoyanov,
DD [Topological groups, 1989] as well as a conjecture of
Shakhmatov, DD [OPiT2, 2006] Banakh, Guran and Protasov,
improved significantly Gaughan’s theorem:

Theorem (Banakh, Guran and Protasov, Topology Appl. 2012)

For every nonempty set X and a subgroup G of S(X ) containing
Sω(X ), one has ZG = MG = Tp �G (i.e., G is a Z-group).

In the sequel, H(X ) denotes the autohomeomorphism group of a
(compact) space X and τk its compact-open topology. For a
(discrete) set X and its one-point compactification αX the groups
(H(αX ), τk) and (S(X ), Tp) are topologically isomorphic. This
fact and the above theorem suggest to investigate when the groups
H(X ) are Z-groups.

Dikran Dikranjan Udine University, Italy The Zariski topology of a group



According to Gaughan’s Theorem, for an infinite set X , Tp is a
minimum topology on S(X ) (so, S(X ) is an M-group).
For a set X , let Sω(X ) be the subgroup of all f ∈ S(X ) with finite
support supp(f ) = {x ∈ X : f (x) 6= x}.
Confirming simultaneously a conjecture from Prodanov, Stoyanov,
DD [Topological groups, 1989] as well as a conjecture of
Shakhmatov, DD [OPiT2, 2006] Banakh, Guran and Protasov,
improved significantly Gaughan’s theorem:

Theorem (Banakh, Guran and Protasov, Topology Appl. 2012)

For every nonempty set X and a subgroup G of S(X ) containing
Sω(X ), one has ZG = MG = Tp �G (i.e., G is a Z-group).

In the sequel, H(X ) denotes the autohomeomorphism group of a
(compact) space X and τk its compact-open topology. For a
(discrete) set X and its one-point compactification αX the groups
(H(αX ), τk) and (S(X ), Tp) are topologically isomorphic. This
fact and the above theorem suggest to investigate when the groups
H(X ) are Z-groups.

Dikran Dikranjan Udine University, Italy The Zariski topology of a group



According to Gaughan’s Theorem, for an infinite set X , Tp is a
minimum topology on S(X ) (so, S(X ) is an M-group).
For a set X , let Sω(X ) be the subgroup of all f ∈ S(X ) with finite
support supp(f ) = {x ∈ X : f (x) 6= x}.
Confirming simultaneously a conjecture from Prodanov, Stoyanov,
DD [Topological groups, 1989] as well as a conjecture of
Shakhmatov, DD [OPiT2, 2006] Banakh, Guran and Protasov,
improved significantly Gaughan’s theorem:

Theorem (Banakh, Guran and Protasov, Topology Appl. 2012)

For every nonempty set X and a subgroup G of S(X ) containing
Sω(X ), one has ZG = MG = Tp �G (i.e., G is a Z-group).

In the sequel, H(X ) denotes the autohomeomorphism group of a
(compact) space X and τk its compact-open topology. For a
(discrete) set X and its one-point compactification αX the groups
(H(αX ), τk) and (S(X ), Tp) are topologically isomorphic. This
fact and the above theorem suggest to investigate when the groups
H(X ) are Z-groups.

Dikran Dikranjan Udine University, Italy The Zariski topology of a group



According to Gaughan’s Theorem, for an infinite set X , Tp is a
minimum topology on S(X ) (so, S(X ) is an M-group).
For a set X , let Sω(X ) be the subgroup of all f ∈ S(X ) with finite
support supp(f ) = {x ∈ X : f (x) 6= x}.
Confirming simultaneously a conjecture from Prodanov, Stoyanov,
DD [Topological groups, 1989] as well as a conjecture of
Shakhmatov, DD [OPiT2, 2006] Banakh, Guran and Protasov,
improved significantly Gaughan’s theorem:

Theorem (Banakh, Guran and Protasov, Topology Appl. 2012)

For every nonempty set X and a subgroup G of S(X ) containing
Sω(X ), one has ZG = MG = Tp �G (i.e., G is a Z-group).

In the sequel, H(X ) denotes the autohomeomorphism group of a
(compact) space X and τk its compact-open topology. For a
(discrete) set X and its one-point compactification αX the groups
(H(αX ), τk) and (S(X ), Tp) are topologically isomorphic. This
fact and the above theorem suggest to investigate when the groups
H(X ) are Z-groups.

Dikran Dikranjan Udine University, Italy The Zariski topology of a group



According to Gaughan’s Theorem, for an infinite set X , Tp is a
minimum topology on S(X ) (so, S(X ) is an M-group).
For a set X , let Sω(X ) be the subgroup of all f ∈ S(X ) with finite
support supp(f ) = {x ∈ X : f (x) 6= x}.
Confirming simultaneously a conjecture from Prodanov, Stoyanov,
DD [Topological groups, 1989] as well as a conjecture of
Shakhmatov, DD [OPiT2, 2006] Banakh, Guran and Protasov,
improved significantly Gaughan’s theorem:

Theorem (Banakh, Guran and Protasov, Topology Appl. 2012)

For every nonempty set X and a subgroup G of S(X ) containing
Sω(X ), one has ZG = MG = Tp �G (i.e., G is a Z-group).

In the sequel, H(X ) denotes the autohomeomorphism group of a
(compact) space X and τk its compact-open topology. For a
(discrete) set X and its one-point compactification αX the groups
(H(αX ), τk) and (S(X ), Tp) are topologically isomorphic. This
fact and the above theorem suggest to investigate when the groups
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When the groups H(X ) are Z-groups

Theorem (Gartside-Glyn Topology Appl., 2003)

ZH(M) = τk for any metric one-dimensional manifold (with or
without non-trivial boundary) M (so H(M) is a Z-group).

Motivated by this theorem and a recent theorem of van Mill (for
n ≥ 1, H(Mn) is not minimal, for the n-dimensional universal
Menger continuum Mn), Megrelishvili and Polev proved:

Theorem (Megrelishvili-Polev, Topology Appl., 2016)

If X is a compact connected ordered space such that for every pair
a < b in X there exist c , d ∈ X with a ≤ c < d ≤ b and [c , d ]
separable, then ZH(X ) = τk (so, H(X ) is a Z-group).

As X one can take for example [0, 1]2 with the lexicographic order,
or the extended long line.
A very recent preprint if Chang and Gartside [arXiv:1510.07161,
2015] answers questions raised by Megrelishvili, Polev and DD.
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Theorem (Chang-Gartside, 2016)

For the following spaces X the group H(X ) is not an M-group
(i.e., does not have a minimum Hausdorff group topology):
(a) Every compact manifold (without boundary) of dimension at
least 2,
(b) the Cantor set, or
(c) the Hilbert cube Q (whether (H(Q), τk) is minimal is an open
question of Uspenskij [2008]).

For a space X let

OX = {x ∈ X : x has a neighborhood homeomorphic to (0, 1)},

(“the one-manifold part of X ”),
SX = {x ∈ X : x has a clopen nbd homeomorphic to S1},

IX = OX \ SX and CX = X \ OX . Gamarnik’s topology τ∗k on
H(X ) has as basic nbds of idX the sets Bε = {h ∈ H(X ) : (∀x ∈
X \ Bε(CX ))d(h(x), x) < ε, d(h−1(x), x) < ε}. If OX is dense in
X , then τ∗k ≤ τk is a Hausdorff group topology on H(X ).
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Theorem (Chang and Gartside, 2016)

Let X be compact metrizable with OX is dense in X. Then
ZG = τ∗k (so H(X ) is Z-group).

More precisely, one can prove that

(a) ZG 6= τk , if either |SX ∩ CX | ≥ 2 or there is a component I of
IX with |I ∩ CX | ≥ 3;

(b) ZG = τk , if one of the following holds:

(b1) dim CX = 0, X \ SX has only finitely many components, and
SX has at most one limit point in C , or

(b2) C is a convergent sequence and SX has at most one limit point
in C .

Example (Chang and Gartside 2016)

For the autohomeomorphism group G of the topologist’s sine curve
ZG = τ∗k < τk is Hausdorff (so G is an Z-group).
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MinAP abelian groups vs Zariski topology
The first known examples of MinAP groups came from Analysis
(the spaces Lp, 0 < p < 1). Nienhuys 1971 built a solenoidal and
monothetic MinAP group. These examples are connected.
The first explicit and also quite simple example of a countable
MinAP group was given by Prodanov in 1980.
In 1983, Ajtai, Havas and Komlós provided MinAP topologies on Z
and some countably infinite direct sums of simple cyclic groups.
In his 1984 Z.Bl.-review to their paper Protasov posed the natural
question of whether every infinite abelian group admits a MinAP
topology.
In September 1989 Remus noticed that G = Z(2)× Z(3)ω does
not admit any MinAP topology. Motivated by this example,
Comfort excluded completely the bounded groups by getting the
following Comfort-Protasov-Remus Problem:

Problem C [Question 521, Open Problems in Topology 1, 1990]

Does every unbounded Abelian group admit a MinAP topology?
What about the countable case?
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Gabriyelyan proved that all countable unbounded groups admit a
MinAP topology, resolving the second part of Problem C. He
obtained these results as particular cases when trying to resolve the
more general question of describing all subgroups H of a given
abelian group G such that there exists a Hausdorff group topology
τ on G with n(G , τ) = H. This justifies the following definition:

Definition (Shakhmatov-DD, 2014)

Let H be a subgroup of an abelian group G . We say that H is a
potential von Neumann kernel of G , if there exists a Hausdorff
group topology τ on G such that n(G , τ) = H.

In these terms the above “realization problem” for the von
Neumann kernel n(G ) can be formulated as follows:

Problem G [Gabriyelyan, Topology Appl. 2009]

Describe all potential von Neuman kernels H of an abelian group G .
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Clearly, an abelian group G admits a MinAP topology if and only if
G is potential von Neumann kernel of itself. So the solution of
Problem G for H = G yields a solution to Problem C.
Gabriyelyan resolved Problem G for “small” subgroups H (i.e.,
either countable or bounded):

Theorem (Gabriyelyan, Topology Appl. 2014)

A subgroup H of an abelian group G is a potential von Neumann
kernel of G if one of the following conditions holds:

(a) G is unbounded and H is either bounded or countable;

(b) G is bounded and contains
⊕

ω Z(k), where k = o(H).

This gives a solution to Problem C when G itself is “small” in the
above sense:

Corollary (Gabriyelyan, Proc. Amer. Math. Soc. 2015)

An abelian group G admits a MinAP topology if G is unbounded
countable, or bounded and contains

⊕
ω Z(k), where k = o(G ).
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Zariski topology detects potential von Neumann kernels
The following easy lemma is helpful for finding a necessary
condition that all potential von Neumann kernels must satisfy.

Lemma (Shakhmatov-DD. 2014)

The von Neumann kernel of a topological group G is contained in
every open subgroup of G and contains every minimally almost
periodic subgroup of G .

Proof.

If H is an open subgroup of G , then G/H is discrete, so it is
maximally almost periodic. Since the characters of G/H separate
points of G/H, we get n(G ) ⊆ H. The last assertion is clear.

Corollary

If H is an open MinAP subgroup of a topological abelian group G,
then H = n(G ).

This can be used for proving that a given subgroup H of a group
G is a potential von Neumann kernel.
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Necessary conditions for the existence of a MinAP topology

Lemma (Necessary condition for potential von Neumann kernels)

All potential von Neumann kernels of an abelian group G are
contained in cZ(G ).

Proof. Indeed, if H is a potential von Neumann kernel witnessed
by some Hausdorff group topology τ with H = n(G , τ), then
cZ(G ) being an unconditionally closed subgroup of G of finite
index is τ -open, so H ≤ cZ(G ) by the above lemma. �

By taking H = G in this lemma, one obtains the following
necessary condition for the existence of a MinAP topology on
arbitrary abelian groups (to be compared with Problem C).

Corollary

If an abelian group G admits a MinAP topology, then G is
ZG -connected.

We show that surprisingly, this quite simple necessary conditions is
also sufficient for the existence of a MinAP topology.
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Theorem (Main Theorem, Shakhmatov-DD. 2014)

For an abelian group an abelian group G , the following are
equivalent:

(a) G admits a MinAP group topology;

(b) G is Z-connected;

(c) all proper unconditionally closed subgroups of G have infinite
index;

(d) for every m ∈ N, either mG = {0} or mG is infinite.

Since unbounded groups are Z-connected, we obtain as immediate
corollary a complete solution of Problem C:

Corollary

Every unbounded abelian group admits a MinAP topology.

As another corollary we obtain also complete solution of Problem
G:
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Corollary

A subgroup H of an abelian group G is a potential von Neumann
kernel iff H ≤ cZ(G ).

Proof. The necessity was proved above. To prove the sufficiency,
assume that H ⊆ cZ(G ) and consider two cases.
Case 1 . H is bounded. If G is unbounded, then H is a potential
von Neumann kernel by Gabiyelyan’s theorem.
Suppose now that G itself is bounded. Since H ⊆ cZ(G ) by our
assumption, and cZ(G ) = G [m] (with m = eo(G )), so G contains⊕

ω Z(m) (Shakh.DD [2010]). As mH = 0, k = o(H) divides m,
so G contains

⊕
ω Z(k). Now H is a potential von Neumann

kernel of G again by Gabiyelyan’s theorem.
Case 2 . H is unbounded. We apply the Main theorem to find a
MinAP topology τ on H. Extend τ to a Hausdorff group topology
τ∗ on G by taking as a base of τ∗ all translates g + U, where
g ∈ G and U 6= ∅ is a τ -open subset of H. Since H is τ∗-open and
(H, τ) is minimally almost periodic, one has H = n(G , τ∗).
Therefore, H is a potential von Neumann kernel of G .
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Corollary

If an abelian group admits a connected group topology, then it
admits also a MinAP topology.

Indeed, if τ is a connected Hausdorff group topology on G , then
τ ≥MG = ZG , so G is also Z-connected, so admits a MinAP
topology.
Finally, a few words about the origin of Problem G. In analogy to
the obvious fact that G/n(G ) is MAP, one may expect that the von
Neumann kernel n(G ) is necessarily MinAP (i.e., n(n(G )) = n(G )).

Problem L [Gábor Lukásc 2004, unpublished]

Is the subgroup n(G ) of a topological abelian group always MinAP?

Lukásc [2006] built examples of group topologies on G = Z(p∞)
having finite but non-trivial n(G ), so clearly n(n(G )) = 0 6= n(G ).
He asked for a description of the abelian groups that admit a
group topology τ such that n(G , τ) 6= 0 is finite. Partial results
were obtained by him and by Nguyen [2009]. The final solution
was given by Gabriyelyan [2009]. This triggered Problem G.
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Problem L [Gábor Lukásc 2004, unpublished]

Is the subgroup n(G ) of a topological abelian group always MinAP?
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Lukásc [2006] built examples of group topologies on G = Z(p∞)
having finite but non-trivial n(G ), so clearly n(n(G )) = 0 6= n(G ).
He asked for a description of the abelian groups that admit a
group topology τ such that n(G , τ) 6= 0 is finite. Partial results
were obtained by him and by Nguyen [2009]. The final solution
was given by Gabriyelyan [2009]. This triggered Problem G.

Dikran Dikranjan Udine University, Italy The Zariski topology of a group



Corollary

If an abelian group admits a connected group topology, then it
admits also a MinAP topology.

Indeed, if τ is a connected Hausdorff group topology on G , then
τ ≥MG = ZG , so G is also Z-connected, so admits a MinAP
topology.
Finally, a few words about the origin of Problem G. In analogy to
the obvious fact that G/n(G ) is MAP, one may expect that the von
Neumann kernel n(G ) is necessarily MinAP (i.e., n(n(G )) = n(G )).
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We are left with the proof of the Main Theorem.
To formulate the idea of the proof we need to recall some
properties of the class MinAP.

(i) If H is a dense subgroup of an abelian topological group G ,
then H is MinAP iff G is MinAP.

(ii) If {Gi : i ∈ I} is a family of MinAP groups, then also
∏

i Gi is
MinAP.

(iii) (3-space property) If G has a closed MinAP subgroup with
MinAP quotient G/N, then G is MinAP.

From (i) and (ii) we deduce that if K is a MinAP group, such that
an abelian group G densely embeds into some power of K , then
this embedding will induce on G a MinAP topology.
The problem is to find a MinAP group K such that every abelian
group G satisfying the necessary conditions (b)-(d) from the Main
Theorem densely embeds into some power of K . Such a group K
can be obtained as a special case of a general construction
proposed by S. Hartman and J. Mycielski in 1958.
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an abelian group G densely embeds into some power of K , then
this embedding will induce on G a MinAP topology.
The problem is to find a MinAP group K such that every abelian
group G satisfying the necessary conditions (b)-(d) from the Main
Theorem densely embeds into some power of K . Such a group K
can be obtained as a special case of a general construction
proposed by S. Hartman and J. Mycielski in 1958.
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