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I have been spending a great deal of time on PFA(S)

mostly because Frank Tall knows where I live

what I mostly want to talk about today is our result

MM(S) implies that forcing with S makes all normal locally
compact spaces ℵ1-CWH

because the proof is so different

from this day forward (and since a few years back)

S refers to a fixed Souslin tree in L[A] that is coherent:
S is a subtree of ω<ω1 satisfying that, for each α ∈ ω1 and s ∈ Sα
and t ∈ ωα, t ∈ S iff {β < α : t(β) 6= s(β)} is finite

Definition

A poset P is S-preserving means that S is still a Souslin tree in the
forcing extension by P, and, as usual

MAC(ω1) for a class C of posets means for P ∈ C: for every ℵ1

many dense sets, there is a (generic) filter meeting them all.
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P. Larson and S. Todorcevic, Katětov’s problem, Trans. Amer.
Math. Soc. 354 (2002)

where

SAω1 is formulated (we could say MA(S)):

S is Souslin and MAC(ω1) holds where C is all S-preserving ccc
posets

and then PFA(S) is formulated in

S. Todorcevic, Forcing with a coherent Souslin tree, Can. J. Math.
(2015), to appear.

C is all S-preserving proper posets

also MM(S) is investigated in Miyamoto’s JSL paper
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PFA(S) and PFA(S)[g] for S-generic g

A consequence of PFA(S) can be interesting because it holds in a
model in which there is Souslin tree

A consequence of PFA(S)[g ] can also be interesting because it
means forcing with S does not give the negation.

The working theme is that forcing with S can give L-like
consequences at ω1 while preserving much of the PFA(S)
consequences (what are they?)

Frank has written PFA(S)[S] for the Masses

where he tells us the name of the game and a long useful list of
consequences
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examples

PFA(S)implies blue statements PFA(S)[g] implies red statements

p = b = c = ω2 p < b = c = ω2

there is a compact L-space there is no compact L-space

there is a q-set normal first countable spaces are ℵ1-CWH

OCA + ¬ PID OCA + PID (best examples of method)

there is an hS non-hL space
I guess I can’t say “S-space”

is there one here?

there is a compact S-space there is no compact S-space

compact sep’ble t = ω have card ≤ c Moore-Mrowka

Moore-Mrowka?
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all automorphisms of P(N)/fin are trivial

and are trivial (new)

Triv(φ) is the ideal of sets on which automorphism φ is trivial

so Question: Does OCA imply φ is trivial? (is still open)

OCA implies Triv(φ) is a dense ideal, how about P-ideal?

MM(S) implies SRP [Miyamoto]

[Paul Larson] SRP implies that if {Eα : α ∈ ω2} are stationary
subsets of ω1, then there is an elementary submodel M (of
whatever) such that M ∩ ω1 = δ ∈ ω1 and {α ∈ M ∩ ω2 : δ ∈ Eα}
is uncountable and cofinal in M ∩ ω2.

∃ LCN non ℵ1-CWH LCN implies ℵ1-CWH
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basics of PFA(S)

If P is proper and p ∈ P is (M,P)-generic, then we want to prove
that S 
 p is (M[g ], P̌)-generic – same(?) as P× S is proper

because then we can apply PFA(S) to P;
to get a useful S-name.

this is how the proof of e.g. PFA(S)|= OCA works.

Lemma

If D ∈ M is a dense subset of P× S , then

Ė = {r ∈ P : (∃s ∈ g) (r , s) ∈ D}

is an S-name of a dense subset of P in M[g ].

Let P be proper and p ∈ P be (M,P)-generic. Then coherence
solves one problem for us, but not another.
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Lemma

If s1, s2 ∈ M ∩ S and if s1 forces that p is (M[g ], P̌)-generic, then
so does s2.

this is because of (there’s only one generic extension)

Lemma

If Ȧ ∈ M is any S-name of a subset of P, then there is another
S-name Ḃ ∈ M such that if s2 is in any S-generic g2, there is an
S-generic g1 3 s1 such that Ȧ[g2] = Ḃ[g1]. use Ȧs1,s2 to denote Ḃ

Proof.

by extending, we assume that s1 and s2 are in same Sβ.

Simply Ḃ = {(p, s1 ⊕ t) : (p, t) ∈ Ȧ, s2 6⊥ t} ; s1 ⊕ t = s1 ∪ (t \ s2)

and define g1 = {s1 ⊕ t : s2 ⊂ t ∈ g2}.
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illustrate with Yorioka result on S-spaces

of course PFA(S) implies there is an S-space, but T. Yorioka
proved that none remain an S-space in PFA(S)[g]

this means that if X is a locally countable hS space, and we design
a proper poset P we must be building an S-name of an
uncountable discrete set, not simply a discrete set

fix {Wx : x ∈ X} a nbhood assignment of clopen countable sets
also imagine S-space in extension, as in {Ẇ x : x ∈ X}

usual PFA poset P consists of p :Mp → X satisfying
p(M1) ∈ M2 ∩ X \ (M1 ∪Wp(M2)) for M1 ∈ M2 ∈Mp

for PFA(S) to get an S-name, we use
p :Mp → X × S and let p(M) = (xM , sm) neither in M
with plan that some filter {pα : α ∈ ω1} ⊂ P
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continuing sort of no S-space

{pα : α ∈ ω1} unravels as Ẏ = {(xδ, sδ) : δ ∈ C}, a name such
that

{xδ, Ẇ xδ : sδ ∈ g} is discrete (with witnessing nbd assignment)

to achieve this we require for p ∈ P and M1 ∈ M2 ∈Mp

if sM1 < sM2 , then sM2 
 xM1 /∈ Ẇ xM2
and (why not)

sM1 forces a value on Ẇ xM1
∩M1 – call it Ẇ xM1

[s1]

all is fine if we can prove P× S is proper

consider e.g. (p, s0) ∈ D ∈ M ≺ H(θ) and
p = { (M1, (x1, s1)), (M2, (x2, s2)), (M3, (x3, s3)) } where
M1 = M ∩ H(κ)

and as in picture for S-positions
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{xδ, Ẇ xδ : sδ ∈ g} is discrete (with witnessing nbd assignment)

to achieve this we require for p ∈ P and M1 ∈ M2 ∈Mp

if sM1 < sM2 , then sM2 
 xM1 /∈ Ẇ xM2
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the PFA no S-space picture

{x1, x2, x3} from a tree T

separated by models

means T is ω1-branching

need (M1,P)-generic

we must reflect into M1
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{x1, x2, x3} from a tree T

separated by models

means T is ω1-branching

using that Ux1 ∪ Ux2 ∪ Ux3

has countable closure

and that M1 ∩ T does not

we can find {x̄1} ∈ M1 ∩ T

with x̄1 /∈ Ux1 ∪ Ux2 ∪ Ux3

{x : {x̄1, x} ∈ T} ∈ M1

repeat to find x̄2
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now picture s0 ∈ S and S × X pairs from P

s0 is saying “you must work in my universe” but P has conditions
as we again try to reflect into M1
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we are forced to have s ′0 < s0 which, by elementarity, then
determines entire structure; discuss Ẇ x ’s next
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We set Ė = {r : (∃sr ) (r , sr ) ∈ D} and (by M ≺ H(θ))
have that s0 
 Ȧ = {x r

1 : r ∈ Ė} is uncountable and in M

and this is fine (enough) for finding x r
1 ∈ M \Wx1 such that

s0 
 x r
1 ∈ Ȧ we can even get x r

1 /∈Wx3

and s2 
 (∃r ∈ Ė ∩M) x r
2 /∈Wx2 is (fairly) standard

but for Ẇ x1 , we must (and can) use that s1 
 Ȧs̄0,s̄1 is uncountable

Unsolved is how to get required x r
1 not in Ẇ x1 [s1] ∪ Ẇ x3 [s3]

because this may even cover M ∩ X .
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Moore-Mrowka under PFA(S)?

Remark

PFA(S) implies there is a compact sequential X that, after forcing
with S, has uncountable tightness; so we can’t simply apply
Moore-Mrowka in PFA(S)[g] model

PFA method for Moore-Mrowka

Suppose X is compact, Y ⊂ X is countably compact, and F is a
maximal free filter of closed subsets of Y that has a base of
separable sets

and that

S preserves that F generates a maximal filter

then (by usual PFA method) X has uncountable tightness.

thus compact countably tight X has cardinality at most c
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MM(S)[g] ` locally compact normal spaces are ℵ1-CWH

Lemma (1. first reduction)

If all locally compact normal spaces of weight ℵ1 are ℵ1-CWH,
then all locally compact normal spaces are ℵ1-CWH.

Lemma (2. second reduction)

Forcing with S implies that the closure of a Lindelof subset of a
locally compact normal space contains no uncountable closed
discrete set.

We now assume that ω1 is a closed discrete subset of a locally
compact space X of weight ℵ1. We have {U(α, ξ) : ξ ∈ ω1} a
neighborhood base (with compact closures) at α ∈ ω1. For
convenience U(α, ξ + 1) ⊂ U(α, ξ) ⊂ U(α, 0).
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Definition

1 For each α and limit δ, let Z (α, δ) =
⋂
{U(α, ξ) : ξ ∈ δ}.

2 for each cub C ⊂ ω1 and α ∈ ω1, α+
C = min(C \ [0, α]),

3 let Z (α,C ) abbreviate Z (α, α+
C ).

Proposition [after forcing with S]

There is a cub C0 so that for all δ ∈ C0, there is a β(δ) < δ+
C such

that ω1 ∩
⋃
α<δ U(α, 0) ⊂ β(δ).

Proof.

This is because
⋃
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Definition

For each cub C ⊂ C0, let AC denote the set of δ such that⋃
α<δ Z (α,C ) ∩ [δ, β(δ)] is not empty.

Lemma [after forcing with S]

If there is a cub C ⊂ C0 such that AC is not stationary, then ω1

has a separation.

Proof.

Larson-Tall prove that in a forcing extension by S, a closed discrete
set of ℵ1 many points of countable character is separated if it is
normalized. If AC is not stationary, we can shrink to C1 so that the
quotient space obtained by collapsing each Z (α,C1) to a point will
result in the image of ω1 being closed discrete and normalized.
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Now we use the generic g viewed as ∈ ωω1

Definition

In the ground model (of MM(S)), let {Cγ : γ ∈ ω2} be a base for
the cub filter, chosen so that, for all ζ < γ, Cγ \ C ′

ζ is countable.

Definition

1 For each cub C ⊂ C0, define the ω-valued function σC on ω1

according to σC (α) = g(α+
C ),

2 Using that X is normal, choose a continuous real-valued
fC ⊃ σC (treating ω as a subset of R),

3 for each γ ∈ ω2, choose γ < ζ(γ) ∈ ω2 so that ∀α, fCγ is
constant on Z (α,Cζ(γ)) (also ensure ζ(·) is a strictly
increasing function).
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now fix S-names for everything

Definition

1 For all α, ξ ∈ ω1, let U̇(α, ξ) be the S-name of the
neighborhood base at α (forced by 1 to have the above
properties).

2 There is a cub (wlog) C0 satisfying that for all
α, ξ, β < δ ∈ C0, each s ∈ Sδ decides “U̇(α, ξ)∩ U̇(β, 0) = ∅”.

3 we can assume that the function ζ : ω2 7→ ω2 is in the ground
model.

4 for each γ, let Eγ = {δ : (∃s ∈ S) s 
 δ ∈ ȦCζ(γ)
}.

Lemma

{Eγ : γ ∈ ω2} is a family of stationary subsets of ω1.
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 δ ∈ ȦCζ(γ)
}.

Lemma

{Eγ : γ ∈ ω2} is a family of stationary subsets of ω1.

Alan Dow PFA(S) implies there are many S-names



ready for the punch line

Proof.

1 Choose our Larson elementary submodel M so that
M ∩ ω1 = δ ∈ Eγ for cofinally many γ in the uncountable set
M ∩ ω2,

2 We can assume that the function ζ is in M as well as the base
{Cγ : γ ∈ ω2},

3 for each γ ∈ M with δ ∈ Eγ , we choose sγ ∈ S forcing δ ∈ Ȧγ

and βγ ∈ [δ, β(δ)] such that sγ 
 βγ ∈
⋃
{Ż (α,Cζ(γ)) : α ∈ δ}

4 There is an uncountable I ⊂ M ∩ ω2 and a single β̄ such that
for all γ ∈ I , δ ∈ Eγ and βγ = β̄,

5 there is a single s̄ ∈ S so that {sγ : γ ∈ I} is dense above s̄.
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proof continued

Proof.

6 for γ < γ′ ∈ I , Cζ(γ′) \ Cζ(γ) ⊂ δ, similarly,

7 the family {δ+
Cγ

: γ ∈ I} is strictly increasing,

8 let s̄ ∈ Sδ̄, then there is a γ ∈ I so that δ+
Cγ
> δ̄

9 ∀L ∈ ω there is a γ < γL ∈ I so that sγL � δ
+
Cγ
⊂ sγ , and

sγL(δ+
Cγ

) = L; meaning sγL 
 ḟCγ (β̄) = L,

10 there is an L such that sγ � δ+
Cγ

forces that U̇(β̄, 0) is disjoint

from
⋃
{Ż (α,Cζ(γ)) : α < δ and σCγ (α) ≥ L} because

α+
Cζ(γ)

< δ for all α < δ and ḟCγ (U̇(β̄, 0)) is bounded.
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< δ for all α < δ and ḟCγ (U̇(β̄, 0)) is bounded.

Alan Dow PFA(S) implies there are many S-names



proof continued

Proof.

6 for γ < γ′ ∈ I , Cζ(γ′) \ Cζ(γ) ⊂ δ, similarly,

7 the family {δ+
Cγ

: γ ∈ I} is strictly increasing,

8 let s̄ ∈ Sδ̄, then there is a γ ∈ I so that δ+
Cγ
> δ̄

9 ∀L ∈ ω there is a γ < γL ∈ I so that sγL � δ
+
Cγ
⊂ sγ , and

sγL(δ+
Cγ

) = L; meaning sγL 
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Proof.

For a final segment of α < δ (i.e. all that matter for β̄ ≥ δ)

sγ � δ+
Cγ

forces that Ż (α,Cζ(γL)) ⊂ Ż (α,Cζ(γ))

sγL is supposed to force that

β̄ is in
⋃
{Ż (α,Cζ(γL)) : α ∈ δ}

but, we have that, because of U̇(β̄, 0), sγL forces

β̄ is not in
⋃
{Ż (α,Cζ(γL)) : α ∈ δ, σCγ (α) ≥ L}

and, since sγL forces that fCγ (β̄) = L, it forces

β̄ is not in
⋃
{Ż (α,Cζ(γL)) : α ∈ δ, σCγ (α) < L}.
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{Ż (α,Cζ(γL)) : α ∈ δ}

but, we have that, because of U̇(β̄, 0), sγL forces

β̄ is not in
⋃
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{Ż (α,Cζ(γL)) : α ∈ δ, σCγ (α) < L}.

Alan Dow PFA(S) implies there are many S-names



Proof.

For a final segment of α < δ (i.e. all that matter for β̄ ≥ δ)
sγ � δ+

Cγ
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