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| have been spending a great deal of time on PFA(S)
mostly because Frank Tall knows where | live

what | mostly want to talk about today is our result

MM(S) implies that forcing with S makes all normal locally
compact spaces N1-CWH

because the proof is so different
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from this day forward (and since a few years back)

S refers to a fixed Souslin tree in L[A] that is coherent:
S is a subtree of w<“ satisfying that, for each & € w; and s € S,
and t e w®, t € Siff {B<a:t(B)#s(8)} is finite
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forcing extension by P, and, as usual
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| have been spending a great deal of time on PFA(S)

mostly because Frank Tall knows where | live
from this day forward (and since a few years back)
S refers to a fixed Souslin tree in L[A] that is coherent:

S is a subtree of w<“ satisfying that, for each & € w; and s € S,
and t e w®, t € Siff {B<a:t(B)#s(8)} is finite

Definition
A poset P is S-preserving means that S is still a Souslin tree in the
forcing extension by P, and, as usual

MA¢(w1) for a class C of posets means for P € C: for every Ng
many dense sets, there is a (generic) filter meeting them all.
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where SA,, is formulated (we could say MA(S)):

S is Souslin and MA¢(w1) holds where C is all S-preserving ccc
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P. Larson and S. Todorcevic, Kat&tov's problem, Trans. Amer.
Math. Soc. 354 (2002)

where SA,, is formulated (we could say MA(S)):

S is Souslin and MA¢(w1) holds where C is all S-preserving ccc
posets

and then PFA(S) is formulated in

S. Todorcevic, Forcing with a coherent Souslin tree, Can. J. Math.
(2015), to appear.

C is all S-preserving proper posets

also MM(S) is investigated in Miyamoto's JSL paper
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PFA(S) and PFA(S)[g] for S-generic g

A consequence of PFA(S) can be interesting because it holds in a
model in which there is Souslin tree

A consequence of PFA(S)[g] can also be interesting because it
means forcing with S does not give the negation.

The working theme is that forcing with S can give L-like
consequences at wy while preserving much of the PFA(S)
consequences (what are they?)

Frank has written PFA(S)[S] for the Masses

where he tells us the name of the game and a long useful list of
consequences
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examples

PFA(S)implies blue statements PFA(S)[g] implies red statements
p=b=c=wy p<b=c=uws

there is a compact L-space  there is no compact L-space

there is a g-set normal first countable spaces are N;-CWH

OCA + - PID OCA + PID (best examples of method)

there is an hS non-hL space

, “ B is there one here?
| guess | can't say “S-space

there is a compact S-space there is no compact S-space

compact sep'ble t = w have card < ¢  Moore-Mrowka
Moore-Mrowka?
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Triv(¢) is the ideal of sets on which automorphism ¢ is trivial
so Question: Does OCA imply ¢ is trivial? (is still open)
OCA implies Triv(¢) is a dense ideal, how about P-ideal?

MM(S) implies SRP [Miyamoto]

[Paul Larson] SRP implies that if {E, : o € wy} are stationary
subsets of wy, then there is an elementary submodel M (of
whatever) such that MNw; =0 € wy and {a € MNwy: § € E,}
is uncountable and cofinal in M N w>.
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all automorphisms of P(N)/fin are trivial and are trivial (new)
Triv(¢) is the ideal of sets on which automorphism ¢ is trivial
so Question: Does OCA imply ¢ is trivial? (is still open)
OCA implies Triv(¢) is a dense ideal, how about P-ideal?

MM(S) implies SRP [Miyamoto]

[Paul Larson] SRP implies that if {E, : o € wy} are stationary
subsets of wy, then there is an elementary submodel M (of
whatever) such that MNw; =0 € wy and {a € MNwy: § € E,}
is uncountable and cofinal in M N w>.

3 LCN non N;-CWH LCN implies N;-CWH
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basics of PFA(S)

If P is proper and p € P is (M, P)-generic, then we want to prove
that S IF p is (M[g], P)-generic — same(?) as P x S is proper
because then we can apply PFA(S) to P;
to get a useful S-name.
this is how the proof of e.g. PFA(S)= OCA works.
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basics of PFA(S)

If P is proper and p € P is (M, P)-generic, then we want to prove
that S IF p is (M[g], P)-generic — same(?) as P x S is proper
because then we can apply PFA(S) to P;
to get a useful S-name.
this is how the proof of e.g. PFA(S)= OCA works.

If D € M is a dense subset of P x S, then

E={reP:(3scg)(rs)ec D}

is an S-name of a dense subset of P in M|[g].

Let P be proper and p € P be (M, P)-generic. Then coherence
solves one problem for us, but not another.
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Ifsi,s0 € MN'S and if s; forces that p is (M[g], P)-generic, then
so does s».

this is because of (there's only one generic extension)
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S-generic g1 > s such that Algo] = Blgy]. use As, ., to denote B
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Ifsi,s0 € MN'S and if s; forces that p is (M[g], P)-generic, then
so does s».

this is because of (there's only one generic extension)

Lemma

If A€ M is any S-name of a subset of P, then there is another
S-name B € M such that if s is in any S-generic gy, there is an
S-generic g1 > s such that Algo] = Blgy]. use As, ., to denote B

| \

Proof
by extending, we assume that s; and s, are in same Sg.

Simply B={(p,s1®t): (p,t) €A s Lt} ;s1Dt=s5U(t\s)
and define g1 = {s1 @ t:s5 Ct € g} O

v
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illustrate with Yorioka result on S-spaces

of course PFA(S) implies there is an S-space, but T. Yorioka
proved that none remain an S-space in PFA(S)[g]
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fix {Wx : x € X} a nbhood assignment of clopen countable sets
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p(Ml) e MbNX \ (M1 U Wp(Mz)) for Mp € M € Mp

for PFA(S) to get an S-name, we use
p: Mp— X xS and let p(M) = (xpm, Sm) neither in M

Alan Dow PFA(S) implies there are many S-names



illustrate with Yorioka result on S-spaces

of course PFA(S) implies there is an S-space, but T. Yorioka
proved that none remain an S-space in PFA(S)[g]

this means that if X is a locally countable hS space, and we design
a proper poset P we must be building an S-name of an
uncountable discrete set, not simply a discrete set

fix {Wy : x € X} a nbhood assignment of clopen countable sets

also imagine S-space in extension, as in {W/, : x € X}

usual PFA poset [P consists of p : M, — X satisfying
p(Ml) e MbNX \ (M1 U Wp(Mz)) for Mp € M € Mp

for PFA(S) to get an S-name, we use

p: Mp— X xS and let p(M) = (xpm, Sm) neither in M
with plan that some filter {py : @ € w1} C P
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continuing sort of no S-space

{Pa : @ € w1} unravels as Y = {(x5,55) : d € C}, a name such
that

{xs, Wy; : s5 € g} is discrete (with witnessing nbd assignment)
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continuing sort of no S-space

{Pa : @ € w1} unravels as Y = {(x5,55) : d € C}, a name such
that

{xs, Wy; : s5 € g} is discrete (with witnessing nbd assignment)

to achieve this we require for p € P and M; € M, € M,
if sp, < sm,, then sy, IF xp, ¢ V'\/XM2 and (why not)

sm, forces a value on Wy, N My —call it W, [s1]

all is fine if we can prove P x S is proper

consider e.g. (p,s) € D € M < H(f) and

p={ (M, (x1,s1)), (M2, (x2,52)), (Ms, (x3,53)) } where
My =Mn H(/i)
and as in picture for S-positions
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the PFA no S-space picture

{x1,%2,x3} from a tree T
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separated by models

means T is wi-branching
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the PFA no S-space picture

{x1,x2,x3} from a tree T
separated by models

3 means T is wi-branching

need (M, P)-generic

we must reflect into My
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{x1,%2,x3} from a tree T
separated by models

means T is wi-branching

using that Uy, U Uy, U Uy,
has countable closure

and that M; N T does not

we can find {x1} e MiNT
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{x1,%2,x3} from a tree T
separated by models

means T is wi-branching

using that Uy, U Uy, U Uy,
has countable closure
and that M; N T does not
we can find {x1} e MiNT
with X1 & U U Uy, U Uy,

{x: {x1,x}eT}re M
repeat to find x»
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now picture sp € S and S x X pairs from P

Sn

Sp is saying “you must work in my universe” but P has conditions
as we again try to reflect into M
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5T o< g ¢ ’ -0
/ /)Ss R d 5'1 < S g‘,ﬂ 3:2 /s Mee

we are forced to have sy < sp which, by elementarity, then
determines entire structure; discuss W 's next
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We set £ = {r : (3sr) (r,sr) € D} and (by M < H())
have that sp IF A = {x{ : r € E} is uncountable and in M

and this is fine (enough) for finding x{ € M\ W, such that
solFx{ € A we can even get x{ ¢ W,,

and s, IF (3r € ENM) x} ¢ W,, is (fairly) standard
but for le, we must (and can) use that s; |- /\50751 is uncountable

Unsolved is how to get required x} not in W, [s1] U Wy, [s3]
because this may even cover M N X.
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Moore-Mrowka under PFA(S)?

PFA(S) implies there is a compact sequential X that, after forcing
with S, has uncountable tightness; so we can't simply apply
Moore-Mrowka in PFA(S)[g] model
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Moore-Mrowka under PFA(S)?

PFA(S) implies there is a compact sequential X that, after forcing
with S, has uncountable tightness; so we can't simply apply
Moore-Mrowka in PFA(S)[g] model

PFA method for Moore-Mrowka

Suppose X is compact, Y C X is countably compact, and F is a
maximal free filter of closed subsets of Y that has a base of
separable sets
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Moore-Mrowka under PFA(S)?

PFA(S) implies there is a compact sequential X that, after forcing
with S, has uncountable tightness; so we can't simply apply
Moore-Mrowka in PFA(S)[g] model

PFA method for Moore-Mrowka

Suppose X is compact, Y C X is countably compact, and F is a
maximal free filter of closed subsets of Y that has a base of
separable sets and that

S preserves that F generates a maximal filter
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Moore-Mrowka under PFA(S)?

PFA(S) implies there is a compact sequential X that, after forcing
with S, has uncountable tightness; so we can't simply apply
Moore-Mrowka in PFA(S)[g] model

PFA method for Moore-Mrowka

Suppose X is compact, Y C X is countably compact, and F is a
maximal free filter of closed subsets of Y that has a base of
separable sets and that

S preserves that F generates a maximal filter

then (by usual PFA method) X has uncountable tightness.
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Moore-Mrowka under PFA(S)?

PFA(S) implies there is a compact sequential X that, after forcing
with S, has uncountable tightness; so we can't simply apply
Moore-Mrowka in PFA(S)[g] model

PFA method for Moore-Mrowka

Suppose X is compact, Y C X is countably compact, and F is a
maximal free filter of closed subsets of Y that has a base of
separable sets and that

S preserves that F generates a maximal filter

then (by usual PFA method) X has uncountable tightness.

thus compact countably tight X has cardinality at most ¢
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MM(S)[g] & locally compact normal spaces are X;-CWH

Lemma (1. first reduction)

If all locally compact normal spaces of weight Ry are X1-CWH,
then all locally compact normal spaces are N1-CWH.
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MM(S)[g] & locally compact normal spaces are X;-CWH

If all locally compact normal spaces of weight Ry are X1-CWH,
then all locally compact normal spaces are N1-CWH.

Lemma (2. second reduction)

Forcing with S implies that the closure of a Lindelof subset of a
locally compact normal space contains no uncountable closed
discrete set. y
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MM(S)[g] F locally compact normal spaces are X;-CWH

If all locally compact normal spaces of weight Ry are X1-CWH,
then all locally compact normal spaces are N1-CWH.

Lemma (2. second reduction)

Forcing with S implies that the closure of a Lindelof subset of a
locally compact normal space contains no uncountable closed
discrete set. y

We now assume that wy is a closed discrete subset of a locally
compact space X of weight X;. We have {U(o, &) : £ € w1} a
neighborhood base (with compact closures) at o € wy. For
convenience U(a, & + 1) C U(, &) C U(e,0).

Alan Dow PFA(S) implies there are many S-names



Definition
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Definition
@ For each « and limit 9§, let Z(«,0) = [{U(«, &) : € € 0}.
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Definition
@ For each « and limit 9§, let Z(«,0) = [{U(«, &) : € € 0}.
@ for each cub C C wy and a € wy, af = min(C \ [0, a]),
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Definition

@ For each « and limit 9§, let Z(«,0) = [{U(«, &) : € € 0}.
@ for each cub C C wy and a € wy, af = min(C \ [0, a]),
@ let Z(a, C) abbreviate Z(av, af).
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@ For each « and limit 9§, let Z(«,0) = [{U(«, &) : € € 0}.
@ for each cub C C wy and a € wy, af = min(C \ [0, a]),
@ let Z(a, C) abbreviate Z(av, af).

4

Proposition [after forcing with S]

There is a cub Gy so that for all § € G, there is a 3(5) < §& such
that w1 N U, U(a, 0) C B(9).
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@ For each « and limit 9§, let Z(«,0) = [{U(«, &) : € € 0}.
@ for each cub C C wy and a € wy, af = min(C \ [0, a]),
@ let Z(a, C) abbreviate Z(av, af).

Proposition [after forcing with S]

There is a cub Gy so that for all § € G, there is a 3(5) < §& such
that w1 N U, U(a, 0) C B(9).

This is because |5 U(,0) has a dense Lindelof subspace and so
by Lemma 2, its closure has countable extent. O

v
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Definition

For each cub C C (y, let Ac denote the set of d such that
Ua<s Z(a, C) N [0, B(5)] is not empty.
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For each cub C C (y, let Ac denote the set of d such that
Ua<s Z(a, C) N [0, B(5)] is not empty.

| A\

Lemma [after forcing with S]

If there is a cub C C Cy such that Ac¢ is not stationary, then w;
has a separation.
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Definition

For each cub C C (y, let Ac denote the set of d such that
Ua<s Z(a, C) N [0, B(5)] is not empty.

Lemma [after forcing with S]

If there is a cub C C Cy such that Ac¢ is not stationary, then w;
has a separation.

Proof.

Larson-Tall prove that in a forcing extension by S, a closed discrete
set of X1 many points of countable character is separated if it is
normalized. If Ac is not stationary, we can shrink to C; so that the
quotient space obtained by collapsing each Z(«a, C;) to a point will
result in the image of w; being closed discrete and normalized. [

| \

v
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Now we use the generic g viewed as € w*!

Definition

In the ground model (of MM(S)), let {C, : v € wa} be a base for
the cub filter, chosen so that, for all { <, C, \ Cé is countable.
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Now we use the generic g viewed as € w*!

In the ground model (of MM(S)), let {C, : v € wa} be a base for
the cub filter, chosen so that, for all { <, C, \ Cé is countable.
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Now we use the generic g viewed as € w*!

In the ground model (of MM(S)), let {C, : v € wa} be a base for
the cub filter, chosen so that, for all { <, C, \ Cé is countable.

@ For each cub C C (, define the w-valued function o¢ on w;
according to oc(a) = g(af),
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Now we use the generic g viewed as € w*!

In the ground model (of MM(S)), let {C, : v € wa} be a base for
the cub filter, chosen so that, for all { <, C, \ Cé is countable.

@ For each cub C C (, define the w-valued function o¢ on w;
according to oc(a) = g(af),

@ Using that X is normal, choose a continuous real-valued
fc D oc¢ (treating w as a subset of R),
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Now we use the generic g viewed as € w*!

In the ground model (of MM(S)), let {C, : v € wa} be a base for
the cub filter, chosen so that, for all { <, C, \ Cé is countable.

@ For each cub C C (, define the w-valued function o¢ on w;
according to oc(a) = g(af),

@ Using that X is normal, choose a continuous real-valued
fc D oc¢ (treating w as a subset of R),

© for each v € wy, choose v < ((7) € wa so that Va, fc is
constant on Z(a, C¢(,)) (also ensure ((-) is a strictly
increasing function).

Alan Dow PFA(S) implies there are many S-names



now fix S-names for everything
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now fix S-names for everything

Q For all o, & € wy, let U(a, €) be the S-name of the

neighborhood base at « (forced by 1 to have the above
properties).
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now fix S-names for everything

Q For all o, & € wy, let U(a, €) be the S-name of the
neighborhood base at « (forced by 1 to have the above
properties).

Q There is a cub (wlog) Cp satisfying that for all
a,&, B <6 € G, each s € Ss decides “U(a, £)NU(B,0) = 0",
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now fix S-names for everything

Q For all o, & € wy, let U(a, €) be the S-name of the
neighborhood base at « (forced by 1 to have the above
properties).

Q There is a cub (wlog) Cp satisfying that for all
a,&, B <6 € G, each s € Ss decides “U(a, £)NU(B,0) = 0",

© we can assume that the function ¢ : wp — w> is in the ground
model.
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now fix S-names for everything

Q For all o, & € wy, let U(a, €) be the S-name of the
neighborhood base at « (forced by 1 to have the above
properties).

Q There is a cub (wlog) Cp satisfying that for all
a,&, B <6 € G, each s € Ss decides “U(a, £)NU(B,0) = 0",

© we can assume that the function ¢ : wp — w> is in the ground
model.

Q foreach vy, let E,={6:(3s€S) sl-de Acc(w) .
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now fix S-names for everything

Q For all o, & € wy, let U(a, €) be the S-name of the
neighborhood base at « (forced by 1 to have the above
properties).

Q There is a cub (wlog) Cp satisfying that for all
a,&, B <6 € G, each s € Ss decides “U(a, £)NU(B,0) = 0",

© we can assume that the function ¢ : wp — w> is in the ground
model.

Q foreach vy, let E,={6:(3s€S) sl-de Acc(w) .

V.

{E, : v € wo} is a family of stationary subsets of w;. \
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ready for the punch line
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ready for the punch line

@ Choose our Larson elementary submodel M so that
M N wy =6 € E, for cofinally many v in the uncountable set
M N wy,
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ready for the punch line

@ Choose our Larson elementary submodel M so that
M N wy =6 € E, for cofinally many v in the uncountable set
M N wy,

@ We can assume that the function ¢ is in M as well as the base
{G iy Ewa},
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ready for the punch line

@ Choose our Larson elementary submodel M so that
M N wy =6 € E, for cofinally many v in the uncountable set
M N wy,

@ We can assume that the function ¢ is in M as well as the base
{C, 1 v € wp},

@ for each v € M with § € E,, we choose s, € S forcing § € A,y
and B, € [4, 3(6)] such that s, IF B, € U{Z(v, C(y)) : @ € 8}
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ready for the punch line

@ Choose our Larson elementary submodel M so that
M N w;y =6 € E, for cofinally many v in the uncountable set
M N wy,

@ We can assume that the function ¢ is in M as well as the base
{C, v € w2},

@ for each v € M with § € E,, we choose s, € S forcing § € A,y
and B, € [4, 3(6)] such that s, IF B, € U{Z(v, C(y)) : @ € 8}

© There is an uncountable / C M Nw, and a single /3 such that
forallyel, 6 € E, and 3, = 3,
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ready for the punch line

@ Choose our Larson elementary submodel M so that

M N w;y =6 € E, for cofinally many v in the uncountable set
M N wy,

@ We can assume that the function ¢ is in M as well as the base
{C, v € w2},

@ for each v € M with § € E,, we choose s, € S forcing § € A,y
and B, € [4, 3(6)] such that s, IF B, € U{Z(v, C(y)) : @ € 8}

© There is an uncountable / C M Nw, and a single /3 such that
forallyel, 6 € E, and 3, = 3,

© there is a single 5 € S so that {s, : 7 € /} is dense above 5.

Ol

y
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proof continued
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proof continued

Q fory <y €1, Coy \ Ce(oy C 6, similarly,
¢(v") \ ~¢()

Alan Dow PFA(S) implies there are many S-names



proof continued

Q fory <+ el, Ce(vy \ Cegy) C 6, similarly,
@ the family {5& .7y € I} is strictly increasing,
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proof continued

Q fory <+ el, Ce(vy \ Cegy) C 6, similarly,
@ the family {5& .7y € I} is strictly increasing,
Q@ let 5 € S5, then there is a 7 € [ so that 53 >4
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proof continued

Q fory <+ el, Ce(vy \ Cegy) C 6, similarly,

@ the family {(5& .7y € I} is strictly increasing,

Q@ let 5 € S5, then there is a 7 € [ so that 5a >4

Q VL cwthereisay <. €/sothats,, [62{/ C sy, and
s%(éa) = L; meaning s,, I- fq(B) =1L,
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proof continued

Q fory <+ el, Ce(vy \ Cegy) C 6, similarly,

@ the family {(5& .7y € I} is strictly increasing,

Q@ let 5 € S5, then there is a 7 € [ so that 6‘& >4

Q VL cwthereisay <. €/sothats,, [62{/ C sy, and
S’YL(éJ'C_,\/) = L; meaning s,, I- fq(B) =1L,

@ there is an L such that s, [5257 forces that U(B,O) is disjoint

from |J{Z(e, Ce(y)) s <6 and oc () > L} because
onCr((v) < ¢ forall @ < § and fcy(U(B,O)) is bounded.

OJ
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For a final segment of o < 4 (i.e. all that matter for 3 > §)
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For a final segment of av < 4 (i.e. all that matter for B >0)
sy | 5a forces that Z(a, Ce(y,)) C Z(av, Ce(yy)

OJ
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Proof

For a final segment of av < 4 (i.e. all that matter for B >6)
sy | 5a forces that Z(a, Ce(y,)) C Z(av, Ce(yy)

Sy, is supposed to force that
Bisin U{Z(a ; Ce(y)) v €6}
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Proof

For a final segment of av < 4 (i.e. all that matter for B >6)
sy | 5a forces that Z(a, Ce(y,)) C Z(av, Ce(yy)

Sy, is supposed to force that
Bisin U{Z(a ; Ce(y)) v €6}

but, we have that, because of U(ﬂ, 0), s,, forces
Bis not in | J{Z(a, Ce(q)) € 0,0¢, (o) > L}
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Proof

For a final segment of v < 6 (i.e. all that matter for 3 > J)
sy | 5a forces that Z(a, Ce(y,)) C Z(av, Ce(yy)

Sy, is supposed to force that
Bisin U{Z(a, w)) €0}

but, we have that, because of U(ﬂ, ) s,, forces
Bis not in | J{Z(a, Ce(q)) € 0,0¢, (o) > L}

and, since s,, forces that fc (8) = L, it forces
B is not in |J{Z(a, Ce(y)) 1 € 0,0¢, (o) < LY.
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