Cotorsion-free groups from a topological viewpoint

Hanspeter Fischer (Ball State University, USA) joint work with Katsuya Eda (Waseda University, Japan)

> TOPOSYM 2016 Prague, Czech Republic July 26, 2016

For an open cover \mathcal{U} of a path-connected space X and $x \in X$, $\pi(\mathcal{U}, x) \leq \pi_1(X, x)$ is generated by all elements $[\alpha \beta \alpha^-]$ with $\alpha : ([0,1],0) \to (X,x)$, $\beta : ([0,1],\{0,1\}) \to (\mathcal{U},\alpha(1))$, $\mathcal{U} \in \mathcal{U}$.

Generalized covering spaces

- Asphericity criteria
- "Cayley graph" for $\pi_1(\mathbb{M})$ of the Menger curve \mathbb{M}

Generalized slender groups

- Theory of free σ -products
- Classification of homotopy types of 1-dim spaces by π_1

(1) $\pi(\mathcal{U},x)$ is a normal subgroup of $\pi_1(X,x)$.

- (1) $\pi(\mathcal{U}, x)$ is a normal subgroup of $\pi_1(X, x)$.
- (2) If V refines U, then $\pi(V, x) \leq \pi(U, x)$.

- (1) $\pi(\mathcal{U}, x)$ is a normal subgroup of $\pi_1(X, x)$.
- (2) If V refines U, then $\pi(V, x) \leq \pi(U, x)$.
- (3) For locally path-connected X:
 - (a) $\exists \ \mathcal{V} : \pi(\mathcal{V}, x) = \bigcap_{\mathcal{U}} \pi(\mathcal{U}, x) \Leftrightarrow X$ has a universal covering space.

- (1) $\pi(\mathcal{U}, x)$ is a normal subgroup of $\pi_1(X, x)$.
- (2) If V refines U, then $\pi(V, x) \leq \pi(U, x)$.
- (3) For locally path-connected X:
 - (a) $\exists \ \mathcal{V} : \pi(\mathcal{V}, x) = \bigcap_{\mathcal{U}} \pi(\mathcal{U}, x) \Leftrightarrow X$ has a universal covering space.
 - (b) $\exists \mathcal{U} : \pi(\mathcal{U}, x) = 1 \Leftrightarrow X$ has a simply connected covering space.

- (1) $\pi(\mathcal{U}, x)$ is a normal subgroup of $\pi_1(X, x)$.
- (2) If V refines U, then $\pi(V, x) \leq \pi(U, x)$.
- (3) For locally path-connected X:
 - (a) $\exists \ \mathcal{V} : \pi(\mathcal{V}, x) = \bigcap_{\mathcal{U}} \pi(\mathcal{U}, x) \Leftrightarrow X$ has a universal covering space.
 - (b) $\exists \mathcal{U} : \pi(\mathcal{U}, x) = 1 \Leftrightarrow X$ has a simply connected covering space.

Example: The Hawaiian Earring $\mathbb{H} = \bigcup_{k=1}^{\infty} C_k$

$$\forall \ \mathcal{U} : \pi(\mathcal{U}, *) \neq 1$$

but
$$\bigcap_{\mathcal{U}} \pi(\mathcal{U}, *) = 1$$

- (1) $\pi(\mathcal{U}, x)$ is a normal subgroup of $\pi_1(X, x)$.
- (2) If V refines U, then $\pi(V, x) \leq \pi(U, x)$.
- (3) For locally path-connected X:
 - (a) $\exists \ \mathcal{V} : \pi(\mathcal{V}, x) = \bigcap_{\mathcal{U}} \pi(\mathcal{U}, x) \Leftrightarrow X$ has a universal covering space.
 - (b) $\exists \mathcal{U} : \pi(\mathcal{U}, x) = 1 \Leftrightarrow X$ has a simply connected covering space.

Example: The Hawaiian Earring $\mathbb{H} = \bigcup_{k=1}^{\infty} C_k$

$$\forall \ \mathcal{U} : \pi(\mathcal{U}, *) \neq 1$$

but
$$\bigcap_{\mathcal{U}}\pi(\mathcal{U},*)$$
 = 1

Definition:
$$\pi^s(X,x) = \bigcap_{\mathcal{U}} \pi(\mathcal{U},x)$$

(Spanier group)

Theorem [F-Zastrow 2007]

There exists a **generalized covering** $p: \widetilde{X} \to X$ w.r.t. $\pi^s(X, x)$:

- (1) \widetilde{X} is path connected (pc) and locally path connected (lpc).
- (2) $p_{\#}: \pi_1(\widetilde{X}, \widetilde{x}) \to \pi_1(X, x)$ is a monomorphism onto $\pi^s(X, x)$.

(3)
$$(\widetilde{X}, \widetilde{x})$$

$$\downarrow p \iff f_{\#}\pi_{1}(Y, y) \leq p_{\#}\pi_{1}(\widetilde{X}, \widetilde{x})$$

$$(Y^{pc,lpc}, y) \xrightarrow{\forall f} (X, x)$$

Theorem [F-Zastrow 2007]

There exists a **generalized covering** $p: \widetilde{X} \to X$ w.r.t. $\pi^s(X, x)$:

- (1) \widetilde{X} is path connected (pc) and locally path connected (lpc).
- (2) $p_{\#}: \pi_1(\widetilde{X}, \widetilde{x}) \to \pi_1(X, x)$ is a monomorphism onto $\pi^s(X, x)$.

(3)
$$(\widetilde{X}, \widetilde{x})$$

$$\downarrow p \iff f_{\#}\pi_{1}(Y, y) \leq p_{\#}\pi_{1}(\widetilde{X}, \widetilde{x})$$

$$(Y^{pc,lpc}, y) \xrightarrow{\forall f} (X, x)$$

If $\pi^s(X,x) = 1$, we call $p: \widetilde{X} \to X$ a generalized universal covering.

Theorem [F-Zastrow 2007]

There exists a **generalized covering** $p: \widetilde{X} \to X$ w.r.t. $\pi^s(X, x)$:

- (1) \widetilde{X} is path connected (pc) and locally path connected (lpc).
- (2) $p_{\#}: \pi_1(\widetilde{X}, \widetilde{x}) \to \pi_1(X, x)$ is a monomorphism onto $\pi^s(X, x)$.

(3)
$$(\widetilde{X}, \widetilde{x})$$

$$(Y^{pc,lpc}, y) \xrightarrow{\forall f} (X, x)$$

$$(X, \widetilde{X}) \longleftrightarrow f_{\#}\pi_{1}(Y, y) \leq p_{\#}\pi_{1}(\widetilde{X}, \widetilde{x})$$

If $\pi^s(X,x) = 1$, we call $p: \widetilde{X} \to X$ a generalized universal covering. Examples with $\pi^s(X,x) = 1$ include:

- 1-dimensional spaces [Eda-Kawamura 1998]
- subsets of surfaces [F-Zastrow 2005]
- certain "trees of manifolds" [F-Guilbault 2005]

An abelian group A is called **slender** if for every homomorphism $h: \mathbb{Z}^{\mathbb{N}} \to A$, $\exists n \in \mathbb{N} \ \forall c_n, c_{n+1}, \dots \in \mathbb{Z}$: $h(0, \dots, 0, c_n, c_{n+1}, \dots) = 0$.

An abelian group A is called **slender** if for every homomorphism $h: \mathbb{Z}^{\mathbb{N}} \to A$, $\exists n \in \mathbb{N} \ \forall c_n, c_{n+1}, \dots \in \mathbb{Z}$: $h(0, \dots, 0, c_n, c_{n+1}, \dots) = 0$.

Definition

A group G is called **n-slender** if for every homomorphism $h: \pi_1(\mathbb{H}, *) \to G$, $\exists n \in \mathbb{N} \ \forall \gamma \subseteq \bigcup_{k=n}^{\infty} C_k$: $h([\gamma]) = 1$.

An abelian group A is called **slender** if for every homomorphism $h: \mathbb{Z}^{\mathbb{N}} \to A$, $\exists n \in \mathbb{N} \ \forall c_n, c_{n+1}, \dots \in \mathbb{Z}: \ h(0, \dots, 0, c_n, c_{n+1}, \dots) = 0$.

Definition

A group G is called **n-slender** if for every homomorphism $h: \pi_1(\mathbb{H}, *) \to G$, $\exists n \in \mathbb{N} \ \forall \gamma \subseteq \bigcup_{k=n}^{\infty} C_k$: $h([\gamma]) = 1$.

Examples: Free groups are n-slender [Higman, Griffiths 1952-56]. Certain HNN extensions of n-slender groups are n-slender, including the Baumslag-Solitar groups [Nakamura 2015].

An abelian group A is called **slender** if for every homomorphism $h: \mathbb{Z}^{\mathbb{N}} \to A$, $\exists n \in \mathbb{N} \ \forall c_n, c_{n+1}, \dots \in \mathbb{Z}: \ h(0, \dots, 0, c_n, c_{n+1}, \dots) = 0$.

Definition

A group G is called **n-slender** if for every homomorphism $h: \pi_1(\mathbb{H}, *) \to G$, $\exists n \in \mathbb{N} \ \forall \gamma \subseteq \bigcup_{k=n}^{\infty} C_k$: $h([\gamma]) = 1$.

Examples: Free groups are n-slender [Higman, Griffiths 1952-56]. Certain HNN extensions of n-slender groups are n-slender, including the Baumslag-Solitar groups [Nakamura 2015].

Theorems [Eda 1992, 2005]

(1) An abelian group A is n-slender $\Leftrightarrow A$ is slender.

An abelian group A is called **slender** if for every homomorphism $h: \mathbb{Z}^{\mathbb{N}} \to A$, $\exists n \in \mathbb{N} \ \forall c_n, c_{n+1}, \dots \in \mathbb{Z}: \ h(0, \dots, 0, c_n, c_{n+1}, \dots) = 0$.

Definition

A group G is called **n-slender** if for every homomorphism $h: \pi_1(\mathbb{H}, *) \to G$, $\exists n \in \mathbb{N} \ \forall \gamma \subseteq \bigcup_{k=n}^{\infty} C_k$: $h([\gamma]) = 1$.

Examples: Free groups are n-slender [Higman, Griffiths 1952-56]. Certain HNN extensions of n-slender groups are n-slender, including the Baumslag-Solitar groups [Nakamura 2015].

Theorems [Eda 1992, 2005]

- (1) An abelian group A is n-slender $\Leftrightarrow A$ is slender.
- (2) A group G is n-slender \Leftrightarrow for every Peano continuum X and every homomorphism $h: \pi_1(X, x) \to G$, $\exists \mathcal{U}: h(\pi(\mathcal{U}, x)) = 1$.

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X, x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$.

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U},x)) = 1$.

Terminology: $\pi_1(X,x)$ is a topological group with basis

$$\{g\pi(\mathcal{U},x)\mid g\in\pi_1(X,x),\ \mathcal{U}\in Cov(X)\}.$$

Consider $K = h(\pi_1(X, x)) \leq G$ as the quotient of $h : \pi_1(X, x) \to K$.

Then
$$K$$
 is Hausdorff $\Leftrightarrow \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$.

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U},x)) = 1$.

Terminology: $\pi_1(X,x)$ is a topological group with basis

$$\{g\pi(\mathcal{U},x)\mid g\in\pi_1(X,x),\ \mathcal{U}\in Cov(X)\}.$$

Consider $K = h(\pi_1(X, x)) \leq G$ as the quotient of $h : \pi_1(X, x) \to K$.

Then K is Hausdorff
$$\Leftrightarrow \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$$
.

Examples: N-slender groups and residually n-slender groups are homomorphically Hausdorff relative to **every** Peano continuum.

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U},x)) = 1$.

Terminology: $\pi_1(X,x)$ is a topological group with basis

$$\{g\pi(\mathcal{U},x)\mid g\in\pi_1(X,x),\ \mathcal{U}\in Cov(X)\}.$$

Consider $K = h(\pi_1(X, x)) \leq G$ as the quotient of $h : \pi_1(X, x) \to K$.

Then
$$K$$
 is Hausdorff $\Leftrightarrow \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$.

Examples: N-slender groups and residually n-slender groups are homomorphically Hausdorff relative to **every** Peano continuum.

Examples of residually n-slender groups include π_1 of 1-dimensional spaces, planar sets, the Pontryagin surface Π_2 , and the Pontryagin sphere $\lim \left(T^2 \leftarrow T^2 \# T^2 \leftarrow T^2 \# T^2 \leftarrow \cdots\right)$.

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U},x)) = 1$.

Definition

We call a group G **Spanier-trivial** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $h(\bigcap_{\mathcal{U}} \pi(\mathcal{U},x)) = 1$, i.e. $h(\pi^s(X,x)) = 1$.

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X, x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$.

Definition

We call a group G **Spanier-trivial** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $h(\bigcap_{\mathcal{U}} \pi(\mathcal{U},x)) = 1$, i.e. $h(\pi^s(X,x)) = 1$.

Properties

(1) G homom-T₂ relative to $X \Rightarrow G$ is S-trivial relative to X.

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X, x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$.

Definition

We call a group G **Spanier-trivial** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $h(\bigcap_{\mathcal{U}} \pi(\mathcal{U},x)) = 1$, i.e. $h(\pi^s(X,x)) = 1$.

- (1) G homom- T_2 relative to $X \Rightarrow G$ is S-trivial relative to X.
- (2) Every group G is S-trivial relative to \mathbb{H} .

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X, x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$.

Definition

We call a group G **Spanier-trivial** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $h(\bigcap_{\mathcal{U}} \pi(\mathcal{U},x)) = 1$, i.e. $h(\pi^s(X,x)) = 1$.

- (1) G homom- T_2 relative to $X \Rightarrow G$ is S-trivial relative to X.
- (2) Every group G is S-trivial relative to \mathbb{H} .
- (3) $\pi_1(X,x)$ is S-trivial rel $X \Leftrightarrow \pi^s(X,x) = 1 \Leftrightarrow \pi_1(X,x)$ is T_2 .

A group G is **homomorphically Hausdorff** relative to a space X if for every homomorphism $h: \pi_1(X, x) \to G$, $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = 1$.

Definition

We call a group G **Spanier-trivial** relative to a space X if for every homomorphism $h: \pi_1(X,x) \to G$, $h(\bigcap_{\mathcal{U}} \pi(\mathcal{U},x)) = 1$, i.e. $h(\pi^s(X,x)) = 1$.

- (1) G homom- T_2 relative to $X \Rightarrow G$ is S-trivial relative to X.
- (2) Every group G is S-trivial relative to \mathbb{H} .
- (3) $\pi_1(X,x)$ is S-trivial rel $X \Leftrightarrow \pi^s(X,x) = 1 \Leftrightarrow \pi_1(X,x)$ is T_2 .
- (4) $\pi^s(X,x) = 1 \Rightarrow X$ is homotopically Hausdorff.

A space X is called **homotopically Hausdorff** if $\forall x \in X$, only the element $1 \in \pi_1(X, x)$ can be represented by arbitrarily small loops.

A space X is called **homotopically Hausdorff** if $\forall x \in X$, only the element $1 \in \pi_1(X, x)$ can be represented by arbitrarily small loops.

Example: The Griffiths twin cone $\mathbb{G} = Cone(\mathbb{H}) \vee Cone(\mathbb{H})$.

G is **not** homotopically Hausdorff.

For an abelian group A, the following are equivalent:

- (a) A is cotorsion-free.
- (b) A is homom-T₂ relative to every Peano continuum.
- (c) A is homom- T_2 relative to the Hawaiian Earring \mathbb{H} .
- (d) A is S-trivial relative to the Griffiths twin cone \mathbb{G} .

For an abelian group A, the following are equivalent:

- (a) A is cotorsion-free.
- (b) A is homom-T₂ relative to every Peano continuum.
- (c) A is homom- T_2 relative to the Hawaiian Earring \mathbb{H} .
- (d) A is S-trivial relative to the Griffiths twin cone \mathbb{G} .

Recall:

An abelian group A is called **cotorsion** if $(A \le B \text{ abelian and } B/A \text{ torsion-free }) \Rightarrow (B = A \oplus C \text{ for some } C).$

For an abelian group A, the following are equivalent:

- (a) A is cotorsion-free.
- (b) A is homom-T₂ relative to every Peano continuum.
- (c) A is homom- T_2 relative to the Hawaiian Earring \mathbb{H} .
- (d) A is S-trivial relative to the Griffiths twin cone \mathbb{G} .

Recall:

An abelian group A is called **cotorsion** if

 $(A \le B \text{ abelian and } B/A \text{ torsion-free }) \Rightarrow (B = A \oplus C \text{ for some } C).$

An abelian group A is called **cotorsion-free** if it does not contain a non-zero cotorsion subgroup.

For an abelian group A, the following are equivalent:

- (a) A is cotorsion-free.
- (b) A is homom-T₂ relative to every Peano continuum.
- (c) A is homom- T_2 relative to the Hawaiian Earring \mathbb{H} .
- (d) A is S-trivial relative to the Griffiths twin cone \mathbb{G} .

Recall:

An abelian group A is called **cotorsion** if

 $(A \le B \text{ abelian and } B/A \text{ torsion-free }) \Rightarrow (B = A \oplus C \text{ for some } C).$

An abelian group A is called **cotorsion-free** if it does not contain a non-zero cotorsion subgroup.

Facts:

A is cotorsion-free \Leftrightarrow A is torsion-free, $\mathbb{Q} \notin A$, $\mathbb{J}_p \notin A \ \forall$ primes p.

For an abelian group A, the following are equivalent:

- (a) A is cotorsion-free.
- (b) A is homom-T₂ relative to every Peano continuum.
- (c) A is homom- T_2 relative to the Hawaiian Earring \mathbb{H} .
- (d) A is S-trivial relative to the Griffiths twin cone \mathbb{G} .

Recall:

An abelian group A is called **cotorsion** if

 $(A \le B \text{ abelian and } B/A \text{ torsion-free }) \Rightarrow (B = A \oplus C \text{ for some } C).$

An abelian group A is called **cotorsion-free** if it does not contain a non-zero cotorsion subgroup.

Facts:

A is cotorsion-free \Leftrightarrow *A* is torsion-free, $\mathbb{Q} \not\in A$, $\mathbb{J}_p \not\in A \ \forall$ primes *p*.

A is slender \Leftrightarrow is cotorsion-free and $\mathbb{Z}^{\mathbb{N}} \notin A$.

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

Suppose
$$h: \pi_1(X, x) \to A$$
 with $0 \neq a \in \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x))$.

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

Suppose
$$h: \pi_1(X, x) \to A$$
 with $0 \neq a \in \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x))$.
Find $\widehat{\mathbb{Z}} = \lim_{\longleftarrow} (\mathbb{Z}/2! \mathbb{Z} \leftarrow \mathbb{Z}/3! \mathbb{Z} \leftarrow \mathbb{Z}/4! \mathbb{Z} \leftarrow \cdots) \stackrel{\phi}{\longrightarrow} A$ with $a \in \phi(\widehat{\mathbb{Z}})$.
(Every homomorphic image of $\widehat{\mathbb{Z}}$ is cotorsion.)

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

Suppose
$$h: \pi_1(X, x) \to A$$
 with $0 \neq a \in \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x))$.

Find
$$\widehat{\mathbb{Z}} = \lim_{\longleftarrow} (\mathbb{Z}/2!\mathbb{Z} \leftarrow \mathbb{Z}/3!\mathbb{Z} \leftarrow \mathbb{Z}/4!\mathbb{Z} \leftarrow \cdots) \stackrel{\phi}{\longrightarrow} A$$
 with $a \in \phi(\widehat{\mathbb{Z}})$.

(Every homomorphic image of $\widehat{\mathbb{Z}}$ is cotorsion.)

Given
$$\sum_{i=1}^{\infty} i! u_i = (u_1 + 2!\mathbb{Z}, u_1 + 2!u_2 + 3!\mathbb{Z}, u_1 + 2!u_2 + 3!u_3 + 4!\mathbb{Z}, \dots)$$

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

Suppose
$$h: \pi_1(X, x) \to A$$
 with $0 \neq a \in \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x))$.

Find
$$\widehat{\mathbb{Z}} = \lim_{\longleftarrow} (\mathbb{Z}/2!\mathbb{Z} \leftarrow \mathbb{Z}/3!\mathbb{Z} \leftarrow \mathbb{Z}/4!\mathbb{Z} \leftarrow \cdots) \stackrel{\phi}{\longrightarrow} A$$
 with $a \in \phi(\widehat{\mathbb{Z}})$.

Given
$$\sum_{i=1}^{\infty} i! u_i = (u_1 + 2! \mathbb{Z}, u_1 + 2! u_2 + 3! \mathbb{Z}, u_1 + 2! u_2 + 3! u_3 + 4! \mathbb{Z}, \dots)$$

find
$$[\ell] \in \pi_1(X,x)$$
 with $n! \mid \left(h([\ell]) - \sum_{i=1}^{n-1} i! u_i a\right)$ in $A \quad \forall n \ge 2$.

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

Suppose
$$h: \pi_1(X, x) \to A$$
 with $0 \neq a \in \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x))$.

Find
$$\widehat{\mathbb{Z}} = \lim_{\longleftarrow} (\mathbb{Z}/2!\mathbb{Z} \leftarrow \mathbb{Z}/3!\mathbb{Z} \leftarrow \mathbb{Z}/4!\mathbb{Z} \leftarrow \cdots) \stackrel{\phi}{\longrightarrow} A$$
 with $a \in \phi(\widehat{\mathbb{Z}})$.

Given
$$\sum_{i=1}^{\infty} i! u_i = (u_1 + 2! \mathbb{Z}, u_1 + 2! u_2 + 3! \mathbb{Z}, u_1 + 2! u_2 + 3! u_3 + 4! \mathbb{Z}, \dots)$$

find
$$[\ell] \in \pi_1(X,x)$$
 with $n! \mid \left(h([\ell]) - \sum_{i=1}^{n-1} i! u_i a\right)$ in $A \quad \forall n \ge 2$.

Define
$$\phi(\sum_{i=1}^{\infty} i! u_i) = h([\ell]).$$

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

Suppose
$$h: \pi_1(X, x) \to A$$
 with $0 \neq a \in \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x))$.

Find
$$\widehat{\mathbb{Z}} = \lim_{\longleftarrow} (\mathbb{Z}/2!\mathbb{Z} \leftarrow \mathbb{Z}/3!\mathbb{Z} \leftarrow \mathbb{Z}/4!\mathbb{Z} \leftarrow \cdots) \stackrel{\phi}{\longrightarrow} A$$
 with $a \in \phi(\widehat{\mathbb{Z}})$.

Given
$$\sum_{i=1}^{\infty} i! u_i = (u_1 + 2! \mathbb{Z}, u_1 + 2! u_2 + 3! \mathbb{Z}, u_1 + 2! u_2 + 3! u_3 + 4! \mathbb{Z}, \dots)$$

find
$$[\ell] \in \pi_1(X,x)$$
 with $n! \mid \left(h([\ell]) - \sum_{i=1}^{n-1} i! u_i a\right)$ in $A \quad \forall n \ge 2$.

Define
$$\phi(\sum_{i=1}^{\infty} i! u_i) = h([\ell])$$
. (Well-defined: $\bigcap_{n \in \mathbb{N}} n! A = \{0\}$.)

"A cotorsion-free \Rightarrow A homom-T₂ rel. every Peano continuum X"

Suppose
$$h: \pi_1(X, x) \to A$$
 with $0 \neq a \in \bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x))$.

Find
$$\widehat{\mathbb{Z}} = \lim_{\longleftarrow} (\mathbb{Z}/2!\mathbb{Z} \leftarrow \mathbb{Z}/3!\mathbb{Z} \leftarrow \mathbb{Z}/4!\mathbb{Z} \leftarrow \cdots) \stackrel{\phi}{\longrightarrow} A$$
 with $a \in \phi(\widehat{\mathbb{Z}})$.

Given
$$\sum_{i=1}^{\infty} i! u_i = (u_1 + 2! \mathbb{Z}, u_1 + 2! u_2 + 3! \mathbb{Z}, u_1 + 2! u_2 + 3! u_3 + 4! \mathbb{Z}, \dots)$$

find
$$[\ell] \in \pi_1(X,x)$$
 with $n! \mid \left(h([\ell]) - \sum_{i=1}^{n-1} i! u_i a\right)$ in $A \quad \forall n \ge 2$.

Define
$$\phi(\sum_{i=1}^{\infty} i! u_i) = h([\ell])$$
. (Well-defined: $\bigcap_{n \in \mathbb{N}} n! A = \{0\}$.)

If
$$u_1 = 1$$
 and $u_i = 0$ for $i \ge 2$, then $\phi(\sum_{i=1}^{\infty} i! u_i) = a$.

Get a sequence $\mathcal{U}_n = \{U_{s_1,s_2,...,s_n} \mid 0 \leqslant s_i < k_i\}$ of open covers of X and subdivision points $a_{s_1,s_2,...,s_n} = \sum_{i=1}^n \frac{s_i}{\prod_{i=1}^i k_i} \in [0,1]$ such that

- (1) $U_{s_1,s_2,...,s_{n-1},s_n} \subseteq U_{s_1,s_2,...,s_{n-1}}$
- (2) $\forall U \in \mathcal{U}_n$: *U* is path connected and diam(*U*) < 1/n
- (3) $f([a_{s_1,s_2,...,s_n},a_{s_1,s_2,...,s_n+1}]) \subseteq U_{s_1,s_2,...,s_n}$

Get a sequence $\mathcal{U}_n = \{U_{s_1, s_2, \dots, s_n} \mid 0 \leqslant s_i < k_i\}$ of open covers of X and subdivision points $a_{s_1, s_2, \dots, s_n} = \sum_{i=1}^n \frac{s_i}{\prod_{i=1}^i k_i} \in [0, 1]$ such that

- (1) $U_{s_1,s_2,...,s_{n-1},s_n} \subseteq U_{s_1,s_2,...,s_{n-1}}$
- (2) $\forall U \in \mathcal{U}_n$: *U* is path connected and diam(U) < 1/n
- (3) $f([a_{s_1,s_2,...,s_n},a_{s_1,s_2,...,s_n+1}]) \subseteq U_{s_1,s_2,...,s_n}$

Put
$$S_n = \{(s_1, s_2, \dots, s_n) \mid 0 \le s_i < k_i\}.$$

Since
$$u_n a \in h(\pi(\mathcal{U}_n, x))$$
 we have $u_n a = h(\prod_{s \in S_n} \prod_{i=1}^{r_s} [\alpha_{s,i} \beta_{s,i} \alpha_{s,i}^-]) \in A$ with $\alpha_{s,i} : ([0,1],0) \to (X,x)$ and $\beta_{s,i} : ([0,1],\{0,1\}) \to U_s$.

Since
$$u_n a \in h(\pi(\mathcal{U}_n, x))$$
 we have $u_n a = h(\prod_{s \in S_n} \prod_{i=1}^{r_s} [\alpha_{s,i} \beta_{s,i} \alpha_{s,i}^-]) \in A$ with $\alpha_{s,i} : ([0,1],0) \to (X,x)$ and $\beta_{s,i} : ([0,1],\{0,1\}) \to U_s$.

Put
$$\ell_s = \prod_{i=1}^{r_s} \gamma_{s,i} \beta_{s,i} \gamma_{s,i}^-$$
 with $\gamma_{s,i} : ([0,1],0) \rightarrow (U_s, f(a_s)).$

Then
$$u_n a = \widetilde{h}(\sum_{s \in S_n} [\ell_s])$$
 where $h : \pi_1(X, x) \to H_1(X) \xrightarrow{\widetilde{h}} A$.

Rearrange the paths in $H_1(X)$ so that

$$\left[\ell\right] = \sum_{i=1}^{n-1} i! \sum_{s \in S_i} \left[\ell_s\right] + n! \left(\sum_{s \in S_n} \left[\ell_s\right] + \left[\delta_s\right]\right).$$

Rearrange the paths in $H_1(X)$ so that

$$[\ell] = \sum_{i=1}^{n-1} i! \sum_{s \in S_i} [\ell_s] + n! \left(\sum_{s \in S_n} [\ell_s] + [\delta_s] \right).$$

Apply $\widetilde{h}: H_1(X) \to A$ and recall that $u_i a = \widetilde{h}(\sum_{s \in S_i} [\ell_s])$ to get

$$h([\ell]) = \sum_{i=1}^{n-1} i! u_i a + n! b \quad \text{for some } b \in A.$$

Rearrange the paths in $H_1(X)$ so that

$$\left[\ell\right] = \sum_{i=1}^{n-1} i! \sum_{s \in S_i} \left[\ell_s\right] + n! \left(\sum_{s \in S_n} \left[\ell_s\right] + \left[\delta_s\right]\right).$$

Apply $\widetilde{h}: H_1(X) \to A$ and recall that $u_i a = \widetilde{h}(\sum_{s \in S_i} [\ell_s])$ to get

$$h([\ell]) = \sum_{i=1}^{n-1} i! u_i a + n! b$$
 for some $b \in A$.

Hence,

$$n! \mid h([\ell]) - \sum_{i=1}^{n-1} i! u_i a$$
 in A for all $n \ge 2$.

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

Retraction induces
$$\mu:\pi_1(\mathbb{H},*) \twoheadrightarrow \prod_{k=1}^\infty \pi_1(C_k,*) = \prod_{k=1}^\infty \mathbb{Z}.$$

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

Retraction induces
$$\mu : \pi_1(\mathbb{H}, *) \twoheadrightarrow \prod_{k=1}^{\infty} \pi_1(C_k, *) = \prod_{k=1}^{\infty} \mathbb{Z}$$
.

Then
$$\mu(\operatorname{incl}_{\#}\pi_1(\bigcup_{k=n}^{\infty}C_k,*))=\prod_{k=n}^{\infty}\mathbb{Z}$$
 for all $n\in\mathbb{N}$.

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

Retraction induces
$$\mu : \pi_1(\mathbb{H}, *) \twoheadrightarrow \prod_{k=1}^{\infty} \pi_1(C_k, *) = \prod_{k=1}^{\infty} \mathbb{Z}$$
.

Then
$$\mu(\operatorname{incl}_{\#}\pi_1(\bigcup_{k=n}^{\infty}C_k,*))=\prod_{k=n}^{\infty}\mathbb{Z}$$
 for all $n\in\mathbb{N}$.

Choose
$$\phi:\prod_{k=1}^\infty\mathbb{Z}\twoheadrightarrow\mathbb{J}_p$$
 with $\phi(\prod_{k=n}^\infty\mathbb{Z})=\mathbb{J}_p$ for all $n\in\mathbb{N}.$

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

Suppose A contains \mathbb{Q} , \mathbb{J}_p or $\mathbb{Z}/p\mathbb{Z}$ for some prime p. Say, $\mathbb{J}_p \leqslant A$.

Retraction induces
$$\mu : \pi_1(\mathbb{H}, *) \twoheadrightarrow \prod_{k=1}^{\infty} \pi_1(C_k, *) = \prod_{k=1}^{\infty} \mathbb{Z}$$
.

Then
$$\mu(incl_{\#}\pi_1(\bigcup_{k=n}^{\infty}C_k,*))=\prod_{k=n}^{\infty}\mathbb{Z}$$
 for all $n\in\mathbb{N}$.

Choose
$$\phi: \prod_{k=1}^{\infty} \mathbb{Z} \twoheadrightarrow \mathbb{J}_p$$
 with $\phi(\prod_{k=n}^{\infty} \mathbb{Z}) = \mathbb{J}_p$ for all $n \in \mathbb{N}$.

Let $\mathcal{U} \in Cov(X)$.

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

Retraction induces
$$\mu : \pi_1(\mathbb{H}, *) \twoheadrightarrow \prod_{k=1}^{\infty} \pi_1(C_k, *) = \prod_{k=1}^{\infty} \mathbb{Z}$$
.

Then
$$\mu(\operatorname{incl}_{\#}\pi_1(\bigcup_{k=n}^{\infty}C_k,*))=\prod_{k=n}^{\infty}\mathbb{Z}$$
 for all $n\in\mathbb{N}$.

Choose
$$\phi: \prod_{k=1}^{\infty} \mathbb{Z} \twoheadrightarrow \mathbb{J}_p$$
 with $\phi(\prod_{k=n}^{\infty} \mathbb{Z}) = \mathbb{J}_p$ for all $n \in \mathbb{N}$.

Let
$$\mathcal{U} \in Cov(X)$$
. Choose $n \in \mathbb{N}$: $incl_{\#}\pi_1(\bigcup_{k=n}^{\infty} C_k, *) \leqslant \pi(\mathcal{U}, *)$.

"A homom- T_2 rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

Retraction induces
$$\mu : \pi_1(\mathbb{H}, *) \twoheadrightarrow \prod_{k=1}^{\infty} \pi_1(C_k, *) = \prod_{k=1}^{\infty} \mathbb{Z}$$
.

Then
$$\mu(\operatorname{incl}_{\#}\pi_1(\bigcup_{k=n}^{\infty}C_k,*))=\prod_{k=n}^{\infty}\mathbb{Z}$$
 for all $n\in\mathbb{N}$.

Choose
$$\phi: \prod_{k=1}^{\infty} \mathbb{Z} \twoheadrightarrow \mathbb{J}_p$$
 with $\phi(\prod_{k=n}^{\infty} \mathbb{Z}) = \mathbb{J}_p$ for all $n \in \mathbb{N}$.

Let
$$\mathcal{U} \in Cov(X)$$
. Choose $n \in \mathbb{N}$: $incl_{\#}\pi_1(\bigcup_{k=n}^{\infty} C_k, *) \leqslant \pi(\mathcal{U}, *)$.

Then
$$\mathbb{J}_p = \phi(\prod_{k=n}^{\infty} \mathbb{Z}) = \phi \circ \mu(\operatorname{incl}_{\#} \pi_1(\bigcup_{k=n}^{\infty} C_k, *)) \leqslant \phi \circ \mu(\pi(\mathcal{U}, *)).$$

"A homom-T₂ rel. $\mathbb{H} \Rightarrow A$ cotorsion-free"

Retraction induces
$$\mu : \pi_1(\mathbb{H}, *) \twoheadrightarrow \prod_{k=1}^{\infty} \pi_1(C_k, *) = \prod_{k=1}^{\infty} \mathbb{Z}$$
.

Then
$$\mu(\operatorname{incl}_{\#}\pi_1(\bigcup_{k=n}^{\infty}C_k,*))=\prod_{k=n}^{\infty}\mathbb{Z}$$
 for all $n\in\mathbb{N}$.

Choose
$$\phi: \prod_{k=1}^{\infty} \mathbb{Z} \twoheadrightarrow \mathbb{J}_p$$
 with $\phi(\prod_{k=n}^{\infty} \mathbb{Z}) = \mathbb{J}_p$ for all $n \in \mathbb{N}$.

Let
$$\mathcal{U} \in Cov(X)$$
. Choose $n \in \mathbb{N}$: $incl_{\#}\pi_1(\bigcup_{k=n}^{\infty} C_k, *) \leqslant \pi(\mathcal{U}, *)$.

Then
$$\mathbb{J}_p = \phi(\prod_{k=n}^{\infty} \mathbb{Z}) = \phi \circ \mu(\operatorname{incl}_{\#} \pi_1(\bigcup_{k=n}^{\infty} C_k, *)) \leqslant \phi \circ \mu(\pi(\mathcal{U}, *)).$$

So,
$$h = \phi \circ \mu : \pi_1(X, *) \to A$$
 with $\bigcap_{\mathcal{U}} h(\pi(\mathcal{U}, x)) = \mathbb{J}_p \neq \{0\}.$

"A Spanier-trivial rel. $\mathbb{G} \Rightarrow A$ cotorsion-free"

"A Spanier-trivial rel. $\mathbb{G} \Rightarrow A$ cotorsion-free"

$$\pi^s(\mathbb{G},*)=\pi_1(\mathbb{G},*)$$

"A Spanier-trivial rel. $\mathbb{G} \Rightarrow A$ cotorsion-free"

$$\pi^{s}(\mathbb{G},*)=\pi_{1}(\mathbb{G},*) \twoheadrightarrow H_{1}(\mathbb{G})$$

Proof

"A Spanier-trivial rel. $\mathbb{G} \Rightarrow A$ cotorsion-free"

Proof

"A Spanier-trivial rel. $\mathbb{G} \Rightarrow A$ cotorsion-free"

Theorem

$$H_1(\mathbb{G}) = \prod_{\mathbb{N}} \mathbb{Z} / \bigoplus_{\mathbb{N}} \mathbb{Z} = \left(\bigoplus_{2^{\aleph_0}} \mathbb{Q}\right) \oplus \left(\prod_{\rho \in \mathbb{P}} A_{\rho}\right)$$

where $A_p = \prod_{\aleph_0} \mathbb{J}_p = \text{ p-adic completion of } \bigoplus_{2^{\aleph_0}} \mathbb{J}_p$

(1) is torsion-free and cotorsion [Eda, Kawamura]

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\oplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

Express $\mathbb{G} = Cone(\mathbb{H}_1) \vee Cone(\mathbb{H}_2)$ with $\mathbb{H} = \mathbb{H}_1 \vee \mathbb{H}_2$

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

Express
$$\mathbb{G} = Cone(\mathbb{H}_1) \vee Cone(\mathbb{H}_2)$$
 with $\mathbb{H} = \mathbb{H}_1 \vee \mathbb{H}_2$

Van Kampen:
$$\pi_1(\mathbb{G}) = \pi_1(\mathbb{H})/\langle\langle \pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2)\rangle\rangle$$

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

Express
$$\mathbb{G} = Cone(\mathbb{H}_1) \vee Cone(\mathbb{H}_2)$$
 with $\mathbb{H} = \mathbb{H}_1 \vee \mathbb{H}_2$

Van Kampen:
$$\pi_1(\mathbb{G}) = \pi_1(\mathbb{H})/\langle\langle \pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2)\rangle\rangle$$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/(\pi_1(\mathbb{H}_1) \star \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})]$$

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

Express
$$\mathbb{G} = Cone(\mathbb{H}_1) \vee Cone(\mathbb{H}_2)$$
 with $\mathbb{H} = \mathbb{H}_1 \vee \mathbb{H}_2$

Van Kampen:
$$\pi_1(\mathbb{G}) = \pi_1(\mathbb{H})/\langle\langle \pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2)\rangle\rangle$$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/(\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})]$$

Let $p: \widetilde{\mathbb{H}} \to \mathbb{H}$ be the generalized universal covering.

Then \mathbb{H} is an \mathbb{R} -tree on which $\pi_1(\mathbb{H})$ acts by homeomorphism.

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

Express
$$\mathbb{G} = Cone(\mathbb{H}_1) \vee Cone(\mathbb{H}_2)$$
 with $\mathbb{H} = \mathbb{H}_1 \vee \mathbb{H}_2$

Van Kampen:
$$\pi_1(\mathbb{G}) = \pi_1(\mathbb{H})/\langle\langle \pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2) \rangle\rangle$$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/(\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})]$$

Let $p: \widetilde{\mathbb{H}} \to \mathbb{H}$ be the generalized universal covering.

Then \mathbb{H} is an \mathbb{R} -tree on which $\pi_1(\mathbb{H})$ acts by homeomorphism.

Key Lemma

Let
$$g \in (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$$

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

Express
$$\mathbb{G} = Cone(\mathbb{H}_1) \vee Cone(\mathbb{H}_2)$$
 with $\mathbb{H} = \mathbb{H}_1 \vee \mathbb{H}_2$

Van Kampen:
$$\pi_1(\mathbb{G}) = \pi_1(\mathbb{H})/\langle\langle \pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2) \rangle\rangle$$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/(\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})]$$

Let $p: \widetilde{\mathbb{H}} \to \mathbb{H}$ be the generalized universal covering.

Then \mathbb{H} is an \mathbb{R} -tree on which $\pi_1(\mathbb{H})$ acts by homeomorphism.

Key Lemma

Let
$$g \in (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$$

Let $\widetilde{f}: [a,b] \to \widetilde{\mathbb{H}}$ be a geodesic with $g = [p \circ \widetilde{f}] = [f]$.

- (1) is torsion-free and cotorsion [Eda, Kawamura]
- (2) contains a subgroup isom. to $\bigoplus_{2^{\aleph_0}} \mathbb{Q}$ [Bogopolski-Zastrow]
- (3) contains a pure subgroup isomorphic to $\bigoplus_{2^{\aleph_0}} \mathbb{Z}$

Express
$$\mathbb{G} = Cone(\mathbb{H}_1) \vee Cone(\mathbb{H}_2)$$
 with $\mathbb{H} = \mathbb{H}_1 \vee \mathbb{H}_2$

Van Kampen:
$$\pi_1(\mathbb{G}) = \pi_1(\mathbb{H})/\langle\langle \pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2) \rangle\rangle$$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/(\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})]$$

Let $p: \widetilde{\mathbb{H}} \to \mathbb{H}$ be the generalized universal covering.

Then $\widetilde{\mathbb{H}}$ is an \mathbb{R} -tree on which $\pi_1(\mathbb{H})$ acts by homeomorphism.

Key Lemma

Let
$$g \in (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$$

Let
$$\widetilde{f}:[a,b]\to\widetilde{\mathbb{H}}$$
 be a geodesic with $g=[p\circ\widetilde{f}]=[f]$.

Then $f = f_1 f_2 \cdots f_n$ such that $g = [f_1][f_2] \cdots [f_n]$ and, for each i, either $f_i \subseteq \mathbb{H}_1$, or $f_i \subseteq \mathbb{H}_2$, or f_i is paired with one other $f_i = f_i^-$.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$
Say $\mathbb{H}_1 = \bigcup_{2 \neq k} C_k$ and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$
Say $\mathbb{H}_1 = \bigcup_{2 \nmid k} C_k$ and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k.$
Consider $a = [\ell_1 \ell_2 \ell_3 \cdots] \in \pi_1(\mathbb{H}).$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$
Say $\mathbb{H}_1 = \bigcup C_k$ and $\mathbb{H}_2 = \bigcup C_k$. Let $\ell_k = \text{loop around } C_k$.

Consider
$$a = [\ell_1 \ell_2 \ell_3 \cdots] \in \pi_1(\mathbb{H})$$
.

Claim:
$$\mathbb{Z} \cong \langle aN \rangle$$
 is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$.
 $(A \leq B \text{ is pure if } \forall a \in A: n|a \text{ in } B \Rightarrow n|a \text{ in } A.)$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2+k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2|k} C_k$. Let $\ell_k = \text{loop around } C_k$.

Claim: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$. $(A \leq B \text{ is pure if } \forall a \in A: n|a \text{ in } B \Rightarrow n|a \text{ in } A.)$

Suppose: $a^m = b^n c$ for some $b \in \pi_1(\mathbb{H}), c \in \mathbb{N}, m \ge 1, n \ge 0$.

Show: n > 0 and $n \mid m$.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2 \nmid k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.

Claim: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$. $(A \leq B \text{ is pure if } \forall a \in A: n|a \text{ in } B \Rightarrow n|a \text{ in } A.)$

Suppose: $a^m = b^n c$ for some $b \in \pi_1(\mathbb{H}), c \in \mathbb{N}, m \ge 1, n \ge 0$.

Show: n > 0 and $n \mid m$.

Since $H_1(\mathbb{G})$ is torsion-free, we may assume m = 1: $c = b^{-n}a$.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2 \neq k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.
Consider $a = \lceil \ell_1 \ell_2 \ell_3 \cdots \rceil \in \pi_1(\mathbb{H})$.

Claim: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$. $(A \leqslant B \text{ is pure if } \forall a \in A: \ n|a \text{ in } B \Rightarrow n|a \text{ in } A.)$

Suppose: $a^m = b^n c$ for some $b \in \pi_1(\mathbb{H}), c \in \mathbb{N}, m \ge 1, n \ge 0$.

Show: n > 0 and $n \mid m$.

Since $H_1(\mathbb{G})$ is torsion-free, we may assume m = 1: $c = b^{-n}a$.

For $g \in \pi_1(\mathbb{H})$, represented as p-image of an arc $[\widetilde{x}, \widetilde{y}] \subseteq \widetilde{\mathbb{H}}$, define $T_k^{\pm}(g) = \text{number of subarcs of } [\widetilde{x}, \widetilde{y}] \text{ projecting to } (\ell_k \ell_{k+1} \ell_{k+2} \cdots)^{\pm}.$

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2 \nmid k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.

Claim: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$. $(A \leq B \text{ is pure if } \forall a \in A: n|a \text{ in } B \Rightarrow n|a \text{ in } A.)$

Suppose: $a^m = b^n c$ for some $b \in \pi_1(\mathbb{H})$, $c \in \mathbb{N}$, $m \ge 1$, $n \ge 0$.

Show: n > 0 and $n \mid m$.

Since $H_1(\mathbb{G})$ is torsion-free, we may assume m = 1: $c = b^{-n}a$.

For $g \in \pi_1(\mathbb{H})$, represented as p-image of an arc $[\widetilde{x}, \widetilde{y}] \subseteq \widetilde{\mathbb{H}}$, define $T_k^{\pm}(g) = \text{number of subarcs of } [\widetilde{x}, \widetilde{y}] \text{ projecting to } (\ell_k \ell_{k+1} \ell_{k+2} \cdots)^{\pm}.$

Lemma \Rightarrow 0 = $T_k^+(c) - T_k^-(c) = 1 - n(T_k^+(b) - T_k^-(b))$, large k.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2 \nmid k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.

Claim: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$. $(A \leq B \text{ is pure if } \forall a \in A: n|a \text{ in } B \Rightarrow n|a \text{ in } A.)$

Suppose: $a^m = b^n c$ for some $b \in \pi_1(\mathbb{H})$, $c \in \mathbb{N}$, $m \ge 1$, $n \ge 0$.

Show: n > 0 and $n \mid m$.

Since $H_1(\mathbb{G})$ is torsion-free, we may assume m = 1: $c = b^{-n}a$.

For $g \in \pi_1(\mathbb{H})$, represented as p-image of an arc $[\widetilde{x}, \widetilde{y}] \subseteq \widetilde{\mathbb{H}}$, define $T_k^{\pm}(g) = \text{number of subarcs of } [\widetilde{x}, \widetilde{y}] \text{ projecting to } (\ell_k \ell_{k+1} \ell_{k+2} \cdots)^{\pm}.$

Lemma
$$\Rightarrow$$
 0 = $T_k^+(c) - T_k^-(c) = 1 - n(T_k^+(b) - T_k^-(b))$, large k .
Hence $n \mid 1$.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2 \nmid k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.
Consider $a = \lceil \ell_1 \ell_2 \ell_3 \cdots \rceil \in \pi_1(\mathbb{H})$.

Have: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2 \neq k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.
Consider $a = \lceil \ell_1 \ell_2 \ell_3 \cdots \rceil \in \pi_1(\mathbb{H})$.

Have: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$.

Now vary the construction:

For
$$\alpha = (s_k)_k \in \{1,2\}^{\mathbb{N}}$$
, put $N_{\alpha} = \{\sum_{k=1}^n s_k 2^{n-k} \mid n \in \mathbb{N}\} \subseteq \mathbb{N}$.

Then N_{α} is infinite and $N_{\alpha} \cap N_{\beta}$ is finite $\forall \alpha \neq \beta$.

$$H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$$
 with $N = (\pi_1(\mathbb{H}_1) * \pi_1(\mathbb{H}_2))[\pi_1(\mathbb{H}), \pi_1(\mathbb{H})].$

Say
$$\mathbb{H}_1 = \bigcup_{2 \nmid k} C_k$$
 and $\mathbb{H}_2 = \bigcup_{2 \mid k} C_k$. Let $\ell_k = \text{loop around } C_k$.
Consider $a = \lceil \ell_1 \ell_2 \ell_3 \cdots \rceil \in \pi_1(\mathbb{H})$.

Have: $\mathbb{Z} \cong \langle aN \rangle$ is a pure subgroup of $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$.

Now vary the construction:

For
$$\alpha = (s_k)_k \in \{1,2\}^{\mathbb{N}}$$
, put $N_{\alpha} = \{\sum_{k=1}^n s_k 2^{n-k} \mid n \in \mathbb{N}\} \subseteq \mathbb{N}$.

Then N_{α} is infinite and $N_{\alpha} \cap N_{\beta}$ is finite $\forall \alpha \neq \beta$.

For
$$N_{\alpha} = \{k_1 < k_2 < \cdots\}$$
 put $a_{\alpha} = [\ell_{2k_1-1}\ell_{2k_1}\ell_{2k_2-1}\ell_{2k_2}\ell_{2k_3-1}\ell_{2k_3}\cdots].$

Then $\bigoplus_{2^{\aleph_0}} \mathbb{Z} \cong \langle a_{\alpha} N \mid \alpha \in \{1,2\}^{\mathbb{N}} \rangle$ is pure in $H_1(\mathbb{G}) = \pi_1(\mathbb{H})/N$.

