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In our dynamical systems (X, f), X will be a compact metric space
and f : X — X a continuous function.
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and f : X — X a continuous function.
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For n € N, f" denotes the n-iterate of a continuous function
f: X—X.
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Ellis Semigroup

In our dynamical systems (X, f), X will be a compact metric space
and f : X — X a continuous function.

For n € N, f" denotes the n-iterate of a continuous function
f: X—X.

Given a dynamical system (X, f), the Ellis semigroup, denoted by
E(X,f), is the pointwise closure of {f": n € N} in the compact
space XX with composition of functions as its algebraic operation.
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either all continuous or all discontinuous?

|
The answer is yes when X is a convergent sequence with its limit
point.
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Ellis Semigroup Given a compact metric space X, when are the functions of

E(X, )\ {f": neN} = E(X,f)*

either all continuous or all discontinuous?

The answer is yes when X is a convergent sequence with its limit
point.

When X = [0, 1], P. Szuca (2013) showed that if f : [0,1] — [0, 1] is
a continuous surjection and if E([0, 1], 7)* contains a continuous
function, then all functions of E(X, f)* are continuous.
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Theorem, 2015

Let (X, f) be a dynamical system such that X is a compact metric
countable space and every accumulation point of X is periodic.
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Let (X, f) be a dynamical system such that X is a compact metric
countable space and every accumulation point of X is periodic. Then
either all function of E(X, f)* are continuous or all of them are
discontinuous.

Countable spaces

Theorem, 2015

Let (X, f) be a dynamical system such that X is a compact metric
countable space. If X has finitely many accumulation points, then
either all function of E(X, f)* are continuous
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Theorem, 2015

Let (X, f) be a dynamical system such that X is a compact metric
countable space and every accumulation point of X is periodic. Then
either all function of E(X, f)* are continuous or all of them are
discontinuous.

Countable spaces

Theorem, 2015

Let (X, f) be a dynamical system such that X is a compact metric
countable space. If X has finitely many accumulation points, then
either all function of E(X, f)* are continuous or all of them are
discontinuous.
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There is a dynamical system (X, f) where X is a compact metric
countable space such that the orbit of each accumulation point is
finite and that there are fy, f; € E(X, f)* so that fy is continuous on
X and f; is discontinuous on X.
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There is a dynamical system (X, f) where X is a compact metric
countable space such that the orbit of each accumulation point is
finite and that there are fy, f; € E(X, f)* so that fy is continuous on
X and f; is discontinuous on X.

|
The space X is the countable ordinal space w? + 1
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Countable spaces Example, 2015

There is a dynamical system (X, f) where X is a compact metric
countable space such that the orbit of each accumulation point is
finite and that there are fy, f; € E(X, f)* so that fy is continuous on
X and f; is discontinuous on X.

|
The space X is the countable ordinal space w? + 1 which is identified
with a suitable subspace of R.
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In this talk we were interested on the cardinality of the Ellis
semigroup E(X, f). The work of A. Kdhler (1995) and M. E. Glasner
and Megrehisvili (2006) contain very interesting results about the
cardinality of E(X, f).
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In this talk we were interested on the cardinality of the Ellis
semigroup E(X, f). The work of A. Kdhler (1995) and M. E. Glasner
and Megrehisvili (2006) contain very interesting results about the
cardinality of E(X, f). Indeed, M. E. Glasner and Megrehisvili
stablished the Bourgain-Fremlin-Talagrand dichotomy for dynamical
systems:
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In this talk we were interested on the cardinality of the Ellis
semigroup E(X, f). The work of A. Kdhler (1995) and M. E. Glasner
and Megrehisvili (2006) contain very interesting results about the
cardinality of E(X, f). Indeed, M. E. Glasner and Megrehisvili
stablished the Bourgain-Fremlin-Talagrand dichotomy for dynamical
systems: Either |E(X, )| < cor E(X, f) contains a copy of SN.
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We willl be mostly concerned with countable compact metrizable
spaces.
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In this talk we were interested on the cardinality of the Ellis
semigroup E(X, f). The work of A. Kdhler (1995) and M. E. Glasner
and Megrehisvili (2006) contain very interesting results about the
cardinality of E(X, f). Indeed, M. E. Glasner and Megrehisvili
stablished the Bourgain-Fremlin-Talagrand dichotomy for dynamical
systems: Either |E(X, )| < cor E(X, f) contains a copy of SN.
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We willl be mostly concerned with countable compact metrizable
spaces. In this case, it is evident that |E(X, )| < c.
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In this talk we were interested on the cardinality of the Ellis
semigroup E(X, f). The work of A. Kdhler (1995) and M. E. Glasner
and Megrehisvili (2006) contain very interesting results about the
cardinality of E(X, f). Indeed, M. E. Glasner and Megrehisvili
stablished the Bourgain-Fremlin-Talagrand dichotomy for dynamical
systems: Either |E(X, )| < cor E(X, f) contains a copy of SN.

Countable spaces

|
We willl be mostly concerned with countable compact metrizable
spaces. In this case, it is evident that |E(X, f)| < c. Moreover, since
E(X, f) is a separable metric space, then E(X, f) is either countable
or has cardinality c.
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B(N) will denote the set of all ultrafilters on N y N* = g(N) \ N will
be the set of all free ultrafilters on N.
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B(N) will denote the set of all ultrafilters on N y N* = g(N) \ N will
be the set of all free ultrafilters on N.

Ultrafilters

|
B(N) is the Stone-Cech compactification of the natural numbers N
with the discrete topology.
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be the set of all free ultrafilters on N.

Ultrafilters

B(N) is the Stone-Cech compactification of the natural numbers N
with the discrete topology.

If ACN, then A= {p € B(N): A€ p} is a basic open subset of
B(N)
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B(N) will denote the set of all ultrafilters on N y N* = g(N) \ N will
be the set of all free ultrafilters on N.

Ultrafilters

B(N) is the Stone-Cech compactification of the natural numbers N
with the discrete topology.

If ACN, then /A\A: {p € B(N) : A € p} is a basic open subset of
B(N) and A* = A\ N is a basic open subset of N*.
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Let p € N*. Let X a space and (x,)nen a sequence in X. We say that
x € X is a p-limit of (x,)nen if for every neighborhood V' of x we
have that {n € N: x, € V} € p.

p-limit points

- |
We write x = p — lim,_ oo Xp.
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Let p € N*. Let X a space and (x,)nen a sequence in X. We say that
x € X is a p-limit of (x,)nen if for every neighborhood V' of x we
have that {n € N: x, € V} € p.

p-limit points

We write x = p — lim,_ oo Xp.

x € X is an accumulation point of {x, : n € N} iff there is p € N*
such that x = p — lim,_, oo Xp.
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Let p € N*. Let X a space and (x,)nen a sequence in X. We say that
x € X is a p-limit of (x,)nen if for every neighborhood V' of x we
have that {n € N: x, € V} € p.

p-limit points

We write x = p — lim,_ oo Xp.

x € X is an accumulation point of {x, : n € N} iff there is p € N*
such that x = p — lim,_, oo Xp.

In a compact space, every sequence has a p-limit point for every
p € N*.
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Let (X, f) a dynamical system. For each p € N*, we define
fP:X — X as fP(x) = p — lim,_, oo f"(x) for all x € X.
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fP:X — X as fP(x) = p — lim,_, oo f"(x) for all x € X.
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fP is called the p-iterate of f, for p € N*.
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Let (X, f) a dynamical system. For each p € N*, we define
fP:X — X as fP(x) = p — lim,_, oo f"(x) for all x € X.

p-iterate

fP is called the p-iterate of f, for p € N*.

Unfortunately, f? is not in general continuous.
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Let X =[0,1] and let 7 : [0, 1] — [0, 1] any continuous function such
that f(0) =0, f(1) =1 and f(t) <1 for all t € (0,1).
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Example

e Let X =[0,1] and let 7 : [0, 1] — [0, 1] any continuous function such
that f(0) =0, f(1) =1 and f(t) <1 for all t € (0,1). Then, f is a

continuous function such that fP[[0,1)] = 0 and fP(1) = 1, for each
p € N*.
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Example

e Let X =[0,1] and let 7 : [0, 1] — [0, 1] any continuous function such
that f(0) =0, f(1) =1 and f(t) <1 for all t € (0,1). Then, f is a

continuous function such that fP[[0,1)] = 0 and fP(1) = 1, for each
p € N*. Therefore, fP is not continuous at 1, for any p € N*.
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By using the p-iteration, for p € B(N), we can see that

i E(Xv f) = {fp pe B(N)}
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|
By using the p-iteration, for p € B(N), we can see that

i E(Xv f) = {fp pe B(N)}

and
E(X,f)" C{fP:pe N}

for any dynamical system (X, f).
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Now, if p, g € B(N), then we define

p+qg=q— lim p+n.
n—oo
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For p € B(N) and n € N, we define
p+n=p— lim (m+ n)
m—00

p-iterate

Folklore

Now, if p, g € B(N), then we define

p+qg=q— lim p+n.
n—oo

We know that S(N) and N* with this operation + are a semigroups.
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Theorem, Folklore

If (X, f) is a dynamical system, then,

p-iterate _ +
fFPofd = fItp

for every p, q € B(N).
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Theorem, Folklore

If (X, f) is a dynamical system, then,

p-iterate f'p o f’q — f‘q+P’
for every p, q € B(N).
1 —

Notice that if £ is continuous for some p € N*, then fP*" is also
continuous for all n € N.
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Let (X, f) be a dynamical system.
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Let (X, f) be a dynamical system. Then E(X, f) is finite iff there
exist M > 0 such that |Of(x)| < M for each x € X.
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Let (X, f) be a dynamical system. Then E(X, f) is finite iff there
exist M > 0 such that |Of(x)| < M for each x € X.

Cardinality

'
It is noteworthy that E(X, f)* could be finite and E(X, f) could be
infinite.
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It is noteworthy that E(X, f)* could be finite and E(X, f) could be
infinite. For instance, if X is a convergent sequence with its limit
point and f is the shift function,
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Let (X, f) be a dynamical system. Then E(X, f) is finite iff there
exist M > 0 such that |Of(x)| < M for each x € X.

Cardinality

|
It is noteworthy that E(X, f)* could be finite and E(X, f) could be
infinite. For instance, if X is a convergent sequence with its limit
point and f is the shift function, then E(X, f) is infinite and

E(X,f)* has only one point.
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For a dynamical system (X, f),
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For a dynamical system (X, f), the w—/imit set of x € X, denoted by
wr(x), is the set of points y € X for which there exists an increasing
sequence (ny)ken such that f™(x) — y.
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For a dynamical system (X, f), the w—/imit set of x € X, denoted by
wr(x), is the set of points y € X for which there exists an increasing
sequence (ny)ken such that f™(x) — y.

Cardinality

Theorem

Let (X, f) be a dynamical system. E(X, )* is finite iff there is
M € N such that |ws(x)| < M for each x € X.
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For a dynamical system (X, f), let Pr denote the set of all periods of
the periodic points of (X, f) which are accumulation points.
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For a dynamical system (X, f), let Pr denote the set of all periods of
the periodic points of (X, f) which are accumulation points.

Let (X, f) be a dynamical system.
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I —
For a dynamical system (X, f), let Pr denote the set of all periods of
the periodic points of (X, f) which are accumulation points.

Cardinality

Theorem

Let (X, f) be a dynamical system. If E(X, f)* is finite, then P is
finite.
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Let (X, f) be a dynamical system.
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Let (X, f) be a dynamical system. If P is infinite, then E(X, f) has
at least size c.
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Let (X, f) be a dynamical system. If P is infinite, then E(X, f) has
at least size c.

Cardinality

Theorem

Let (X, f) be a dynamical system and assume that X has a point

with dense orbit. If fP is continuous for every p € N*, then
[E(X, )] < [X].
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Theorem, S. Mazurkiewicz and W. Sierpinski, 1920

Every compact metric countable space is homeomorphic to a
countable ordinal with the order topology.
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Theorem, S. Mazurkiewicz and W. Sierpinski, 1920

Every compact metric countable space is homeomorphic to a
countable ordinal with the order topology.

|
Countable case In what follows, our phase space will be the compact metric space
w® + 1 where « is a countable ordinal.
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Theorem, S. Mazurkiewicz and W. Sierpinski, 1920

Every compact metric countable space is homeomorphic to a
countable ordinal with the order topology.

|
Countable case In what follows, our phase space will be the compact metric space
w® + 1 where « is a countable ordinal.

|
For our convenience, X’ will denote the set of limit points of X, d will
stand for the unique point of w® + 1 of CB-rank « and



Countable case

Dynamical
systems

S. Garcia-Ferreira

Theorem, S. Mazurkiewicz and W. Sierpinski, 1920

Every compact metric countable space is homeomorphic to a
countable ordinal with the order topology.

|
Countable case In what follows, our phase space will be the compact metric space
w® + 1 where « is a countable ordinal.

|
For our convenience, X’ will denote the set of limit points of X, d will
stand for the unique point of w® + 1 of CB-rank « and {d, : n € N}
will be the collection of all its points with CB-rank equal to o — 1.
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Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense

orbit.
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Lema

Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:
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Lema

Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:

(1) f(y) is a limit point for every y € (w* + 1)'.
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Lema

Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:

(1) f(y) is a limit point for every y € (w* + 1)'.
Countatiecase (if) The range of f is w® + 1\ {w}.
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Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® 4+ 1 with a dense
orbit. Then the following conditions hold:

(1) f(y) is a limit point for every y € (w* + 1)'.
Countatiecase (if) The range of f is w® + 1\ {w}.
(iii) 1f x € (w* + 1), then @ # f~1(x) C (w™ + 1)



Countable case

Dynamical
systems

S. Garcia-Ferreira

Lema

Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:

(1) f(y) is a limit point for every y € (w* + 1)'.
counbie e (if) The range of f is w® + 1\ {w}.

(iii) 1f x € (w* + 1), then @ # f~1(x) C (w™ + 1)
(iv) 1 < CB(f(d)).
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Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit.
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Lemma

Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:

(i) Let x € (w* + 1) so that CB(x) =+ < a and CB(y) < +y for
Countable case every y [ f_l(X).
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Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:

(i) Let x € (w* + 1) so that CB(x) =+ < a and CB(y) < +y for
Countable case every y € f1(x). If (x,)nen is a sequence such that x, — x and
CB(xn) =~ — 1, for each n € N,
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Lemma

Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:

(i) Let x € (w* + 1) so that CB(x) =+ < a and CB(y) < +y for
Countable case every y € f1(x). If (x,)nen is a sequence such that x, — x and
CB(xn) = — 1, for each n € N, then there is N € N such that
if n> N, then CB(z) < CB(xy) for all z € f~1(x,).
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Lemma

Let (w™ + 1,f) be a dynamical system with & > 1 a countable
successor ordinal, such that there exists w € w® + 1 with a dense
orbit. Then the following conditions hold:

(i) Let x € (w* + 1) so that CB(x) =+ < a and CB(y) < +y for
Countable case every y € f1(x). If (x,)nen is a sequence such that x, — x and
CB(xn) = — 1, for each n € N, then there is N € N such that
if n> N, then CB(z) < CB(xy) for all z € f~1(x,).

(i) f(d) =d.
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Let (w? + 1, f) be a dynamical system such that there exists
w € w? + 1 with a dense orbit.
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Let (w? + 1, f) be a dynamical system such that there exists
w € w? + 1 with a dense orbit. Then P is continuous, for every
p € N*, and E*(w? + 1, f) is countable.
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m there is a point of w3 + 1 with a dense orbit, and
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There is a continuous function f : w® + 1 — w3 + 1 such that
m there is a point of w3 + 1 with a dense orbit, and

m P is discontinuous for every p € N*,
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There is a continuous function f : w2 + 1 — w? + 1 such that
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There is a continuous function f : w2 + 1 — w? + 1 such that
E(w? 4+ 1, f) is homeomorphic to the space w? + 1.

Countable case
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Question

Is there a dynamical system (X, f) such that X is connected and
there are two functions fy, fi € E*(X, f) such that f is continuous
and f is discontinuous?
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Question

Is there a dynamical system (X, f) such that X is connected and
there are two functions fy, fi € E*(X, f) such that f is continuous
and f is discontinuous?

|
Given a dynamical system (w® + 1, f) with dense orbit, where o > 3,
is E(w® + 1, f) always countable?
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Question

Given an arbitrary compact metric countable space X, is there a
continuous function f : X — X such that E(X, f) is homeomorphic
to X7

Questions
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