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Typical problem to consider...

There are two powerful paradigms in set theory for solving (e.g.
topological) problems

The Axiom of constructibility V=L, and

forcing axioms (MA, PFA, MM,. . . )

We shall look at problems not settled by these (or rather ”settled in the
same way”). Usually problems of the form:

Is there a topological space (or a family of spaces, or a combinatorial
object) with property P?
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Typical analysis of such a problem

CH ⇒ Yes

MA ⇒ Yes

”Optimize” the above proofs to get inv = c ⇒ YES.

Cardinal invariants of the continuum serve primarily as a scale
against which we measure the complexity (or strength) of our
LONG (c-many tasks in c-many steps) recursive constructions.

There is typically a companion SHORT (c-many tasks in ω1-many
steps) recursive construction using a parametrized (weak)
♦-principle.

The intention being to EITHER split the problem into manageable cases
to produce a ZFC result, OR to obtain more information for the search of
a suitable forcing model to prove a consistency result.
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Cardinal invariants of the continuum

”...The cardinal characteristics are simply the smallest cardinals for which
various results true for ℵ0 become false....”

——– A. Blass: Combinatorial Cardinal Characteristics of the Continuum

b = min{|F| : F ⊆ ωω ∀g ∈ ωω ∃f ∈ F |{n : f (n) > g(n)}| = ω}
s = min{|S| : S ⊆ [ω]ω ∀A ∈ [ω]ω ∃S ∈ S |S ∩ A| = |A \ S | = ω}

M. Hrušák Weak diamonds and topology



Cardinal invariants of the continuum

”...The cardinal characteristics are simply the smallest cardinals for which
various results true for ℵ0 become false....”

——– A. Blass: Combinatorial Cardinal Characteristics of the Continuum

b = min{|F| : F ⊆ ωω ∀g ∈ ωω ∃f ∈ F |{n : f (n) > g(n)}| = ω}
s = min{|S| : S ⊆ [ω]ω ∀A ∈ [ω]ω ∃S ∈ S |S ∩ A| = |A \ S | = ω}
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Cardinal invariants of the continuum

cov(N ) // non(M) // cof(M) // cof(N )

b

OO

// d

OO

add(N )

OO

// add(M) //

OO

cov(M) //

OO

non(N )

OO

Cichoń’s diagram
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Weak diamond

Definition (Devlin-Shelah 1978)

The weak diamond principle Φ is the following assertion:

∀F : 2<ω1 → 2 ∃g : ω1 → 2 ∀f ∈ 2ω1

{α < ω1 : F (f � α) = g(α)} is stationary.

Theorem (Devlin-Shelah 1978)

Φ is equivalent to 2ω < 2ω1 .
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Malykhin’s problem

Problem (Malykhin 1978)

Is there a separable (equvalently, countable) Fréchet group which is not
metrizable?

Partial positive solutions:

p > ω1 . . . Yes

(Gerlits-Nagy 1982 ) There is an uncountable γ-set . . . Yes

(Nyikos 1989) p = b . . . Yes

Theorem (H.-Ramos Garćıa 2014)

It is consistent with ZFC that every separable Fréchet group is
metrizable.
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Weak diamond and Fréchet groups

Theorem (H.–Ramos-Garćıa 2014)

Assuming Φ, there is a countable non-metrizable Fréchet group
(of weight ℵ1).

Given a filter F on ω let

F<ω = {A ⊆ [ω]<ω : (∃F ∈ F)[F ]<ω ⊆ A}.

Declaring F<ω the filter of neighbourhoods of the ∅ induces a group
topology τF on the Boolean group [ω]<ω with the symmetric difference
as the group operation.
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Φ ⇒ ∃ countable non-metrizable Fréchet group

We shall use Φ to show that there is a pair of mutually orthogonal,
⊆∗-increasing sequences of infinite subsets of ω (in fact, a Hausdorff gap)
〈Aα : α < ω1〉, 〈Bα : α < ω1〉 so that

for every X ⊆ [ω]<ω \ {∅} there exists an α < ω1 such that either

1 there is an n ∈ ω such that a ∩ (Aα ∪ n) 6= ∅ for every a ∈ X , or

2 for every n ∈ ω there is an a ∈ X such that min a > n and a ⊂ Bα.

Having done that, let F be the filter generated by the complements of
the Aα’s and the co-finite sets. Then τF is Fréchet group which is not
metrizable.
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Φ ⇒ ∃ countable non-metrizable Fréchet group

Recall - Φ: ∀F : 2<ω1 → 2 Borel ∃g : ω1 → 2 ∀f ∈ 2ω1

{α < ω1 : F (f � α) = g(α)} is stationary.

Want 〈Aα : α < ω1〉, 〈Bα : α < ω1〉, ⊆∗-increasing mutually orthogonal
so that for every X ⊆ [ω]<ω \ {∅} there exists an α < ω1 such that either

1 there is an n ∈ ω such that a ∩ (Aα ∪ n) 6= ∅ for every a ∈ X , or

2 for every n ∈ ω there is an a ∈ X such that min a > n and a ⊂ Bα.
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Φ ⇒ ∃ countable non-metrizable Fréchet group

The domain of F (using a suitable coding) is the set of all triples
〈X , 〈Aβ : β < α〉, 〈Bβ : β < α〉〉 such that:

1 X ⊆ [ω]<ω \ {∅}.
2 α is an infinite countable ordinal.
3 〈Aβ : β < α〉, 〈Bβ : β < α〉 is a pair of mutually orthogonal,
⊆∗-increasing sequences of infinite subsets of ω.

Given a pair 〈Aβ : β < α〉, 〈Bβ : β < α〉 as above, fix disjoint sets A
and B such that A almost contains all Aβ , β < α, while B almost
contains all Bβ , β < α, and ω = A ∩ B.1

F (t) =

{
0 if ∃n ∈ ω ∀a ∈ X (a ∩ (A ∪ n) 6= ∅);

1 if ∀n ∈ ω ∃a ∈ X (a ∩ (A ∪ n) = ∅).

1Let α = {αn : n ∈ ω} be an enumeration of α. For each n ∈ ω, let

An+1 = An ∪
(
Aαn+1 \

⋃
k6n B

k
)

and Bn+1 = Bn ∪
(
Bαn+1 \

⋃
k6n+1 A

k
)

, where

A0 = Aα0 and B0 = Bα0 \ Aα0 . Then, A =
⋃

n∈ω An and B = ω \ A are as required.
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Φ ⇒ ∃ countable non-metrizable Fréchet group

Now suppose that g : ω1 → 2 is a ♦-sequence for F . Construct
〈Aα : α < ω1〉, 〈Bα : α < ω1〉 as follows:

Let 〈An : n < ω〉, 〈Bn : n < ω〉 be any pair of mutually orthogonal,
⊆∗-increasing sequences of infinite subsets of ω. If 〈Aβ : β < α〉,
〈Bβ : β < α〉 have been defined, consider the corresponding partition
ω = A ∪ B such that A almost contains all Aβ , β < α, while B
almost contains all Bβ , β < α constructed by the algorithm
described above.

If g(α) = 0, then let Aα = A, and let Bα be a co-infinite subset of
B still almost containing all Bβ , β < α.

If g(α) = 1, then let Bα = B, and let Aα be a co-infinite subset of
A almost containing all Aβ , β < α.
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Weakest weak diamond

Definition (Devlin-Shelah 1978)

The weak diamond principle Φ is the following assertion:

∀F : 2<ω1 → 2 ∃g : ω1 → 2 ∀f ∈ 2ω1

{α < ω1 : F (f � α) = g(α)} is stationary (unbounded).

Definition (Moore-H.-Džamonja 2004)

The weakest (or Borel) weak diamond principle ♦(2,=) is the following
assertion:

∀F : 2<ω1 → 2 Borel ∃g : ω1 → 2 ∀f ∈ 2ω1

{α < ω1 : F (f � α) = g(α)} is stationary (unbounded).a

aF is Borel if F � 2α is Borel for every α < ω1.

Borel .... F � 2α is Borel for every α < ω1.
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Weak diamond vs. Weakest weak diamond

Theorem (Devlin-Shelah 1978)

The principle Φ holds if and only if 2ω < 2ω1 . In particular, it holds
assuming CH.

(Moore-H.-Džamonja 2004) ♦(2,=) holds in many models of 2ω = 2ω1 :

after forcing with the Suslin tree,

in models obtained by ”definable” CS or FS iterations.
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Parametrized diamonds

Definition (Moore-H.-Džamonja 2004)

The principle ♦(b) is the following assertion:

∀BorelF : 2<ω1 → ωω ∃g : ω1 → ωω ∀f ∈ 2ω1

{α < ω1 : F (f � α) 6≥∗g(α)} is stationary.

Borel .... F � 2α is Borel for every α < ω1.

Theorem (MHD 2004)

If Pω2 is a CSI iteration of a sufficiently definable sufficiently
homogeneous proper forcing such that V Pω2 |= b = ω1 then
V Pω2 |= ♦(b).
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Archangel’skii problem:
Compact weakly first countable spaces

A topological space X is weakly first countable if for any point x ∈ X
there is a countable collection {Cn(x) : n ∈ ω} of subsets of X each
containing x such that a set U ⊆ X is open if and only if
∀x ∈ U ∃n ∈ ω Cn(x) ⊆ U.

Jakovlev 1976 (CH) There is a weakly first countable compact space
which is not first countable.

Abraham-Gorelic-Juhász 2006 (b = c) There is a Jakovlev space.

Gaspar-Hernández-H. 2015 (♦(b)) There is a Jakovlev.
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Steprāns problem:
Cohen-indestructible MAD families

A maximal almost disjoint (MAD) family A ⊆ P(ω) is
Cohen-indestructible if it remains maximal after adding a Cohen-real
(equivalently, any number of Cohen-reals).

Kunen 1980 (CH) There is a Cohen-indestructible MAD family.

Garcia-Ferreira-H. 2001 (b = c) There is a Cohen-indestructible
MAD family.

Guzmán-H. 2015 (♦(b)) There is a Cohen-indestructible MAD
family.
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The Scarborough-Stone problem:
Products of sequentially compact spaces

A topological space X is sequentialy compact (resp. countably compact)
if any countable sequence in X has a convergent subsequence (resp. an
accumulation point).

Vaughan 1976 (♦) There is a family of sequentially compact spaces
whose product is not countably compact.

van Douwen 1984 (b = c) There is a family of sequentially compact
spaces whose product is not countably compact.

Gaspar-Hernández-H. 2015 (♦(s)) There is a family of sequentially
compact spaces whose product is not countably compact.

The principle ♦(s) is the following:

∀BorelF : 2<ω1 → [ω]ω ∃g : ω1 → [ω]ω ∀f ∈ 2ω1

{α < ω1 : g(α) splits F (f � α)} is stationary.
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Archangel’skii-Franklin problem:
Sequential order of compact spaces

Recall that a topological space X is sequential if any subset which is not
closed contains a convergent sequence whose limit is outside of the set.
In other words, closure can be obtained by iterating adding limits of
convergent sequences, the sequential order of X being the minimal
number of iterations necessary to get the closure.

Isbell-Mrowka (implicitly) There is a compact sequential space of
sequential order 2.

Bashkirov 1974 (CH) There is a compact sequential space of
sequential order ω1.

Dow 2005 (b = c) There is a compact space of sequential order 4.

Gaspar-Henández-H. (♦(b)) There is a compact sequential space of
sequential order ω.

Gaspar-Henández-H. (♦(bs)) There is a compact sequential space of
sequential order ω1.
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Parametrized weak diamonds

An invariant is a triple (A,B,→) where →⊆ A× B is such that
(1) ∀a ∈ A ∃b ∈ B a→ b, and
(2) ∀b ∈ B ∃a ∈ A a 6→ b.
Given an invariant (A,B,→) the evaluation of (A,B,→) is

||A,B,→ || = min{|B ′| : B ′ ⊆ B ∀a ∈ A ∃b ∈ B ′ a→ b}

We abbreviate (A,A,→) as (A,→).

Definition Φ(A,B,→)

∀F : 2<ω1 → A ∃g : ω1 → B ∀f ∈ 2ω1

{α < ω1 : F (f � α)→g(α)} is stationary.

Disadvantage: Φ(A,B,→) implies 2ω < 2ω1 .
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Parametrized diamonds - Moore-H.-Džamonja

We restrict to Borel invariants - require A,B and → to be Borel subsets
of Polish spaces.

Definition (MHD 2004) ♦(A,B,→)

∀F : 2<ω1 → A Borel ∃g : ω1 → B ∀f ∈ 2ω1

{α < ω1 : F (f � α)→g(α)} is stationary.

F is Borel if F � 2α is Borel for every α < ω1.
Easy observations:

♦(A,B,→) ⇒ ||A,B,→ || ≤ ω1,

♦ ⇔ ♦(R,=),

(A,B,→) ≤GT (A′,B ′,→′) and ♦(A′,B ′,→′) ⇒ ♦(A,B,→).
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... and the point is ...

Theorem (MHD 2004)

If W is a canonical model and (A,B,→) is a Borel invariant then
W |= ♦(A,B,→) if and only if ||A,B,→ || ≤ ω1.

By a CANONICAL MODEL we mean a model which is the result of a
CSI of length ω2 of a single sufficiently definable (e.g. Suslin) and
sufficiently homogeneous (P ' {0, 1} × P) proper forcing P.
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Results from (MHD)

♦(non(M)) ⇒ There is a Suslin tree.

♦(sω) ⇒ There is an Ostaszewski space.

♦(b) ⇒ There is a non-trivial coherent sequence on ω1 which can
not be uniformized.

Cardinal invariants with ”structure” have their Borel ”shadows”, e.g.
♦(b)⇒ a = ω1, ♦(r)⇒ u = ω1,. . .

CH + “Almost no diamonds hold” is consistent.
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Further results

(Yorioka, 2005) ♦(non(M)) ⇒ There is a ccc destructible
Hausdorff gap.

(Minami 2005) Separated ♦’s for invariants in the Cichoń diagram
under CH.

(Kastermans-Zhang 2006) ♦(non(M)) ⇒ There is a maximal
cofinitary group of size ω1.

(Minami 2008) Parametrized diamonds hold in FSI iterations of
Suslin ccc forcings.

(Mildenberger, Mildenberger-Shelah 2009-2011) No other diamonds
in the Cichoń diagram imply the existence of a Suslin tree (all are
consistent with “all Aronszajn trees are special”).
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More examples

(Cancino-H.-Meza 2014) ♦(r) ⇒ There is a countable irresolvable
space of weight ω1.

(H.–Ramos-Garćıa 2014) ♦(2,=) ⇒ There is a separable Fréchet
non-metrizable group.

(Chodounský 2014) ♦(2,=) ⇒ There is a tight Hausdorff gap of
functions.

(Fernández-H. 2015) ♦(rHindman) ⇒ There is a union-ultrafilter of
character ω1.

(Fernández-H. 2015) ♦(rFin×scattered) ⇒ There is a gruff ultrafilter
of character ω1.
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Cosmetic changes

Definition ♦(A,B,→)

∀F : 2<ω1 → A Borel ∃g : ω1 → B ∀f ∈ 2ω1

{α < ω1 : F (f � α)→g(α)} is stationary.

It turns out that the requirement that F be Borel is unnecessarily strong
– can be replaced by F � 2α is definable from an ω1-sequence of reals (or
even an ω1-sequence of ordinals), i.e. F � 2α ∈ L(R)[X ], where X is an
ω1-sequence of ordinals, which we shall call ω1-definable.

Definition ♦ω1 (A,B,→)

∀F : 2<ω1 → A ω1-definable ∃g : ω1 → B ∀f ∈ 2ω1

{α < ω1 : F (f � α)→g(α)} is stationary.
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The weakest weak diamond and failure of Baumgartner

♦ω1 (2,=) - the Weakest weak diamond

∀F : 2<ω1 → 2 ω1-definable ∃g : ω1 → 2 ∀f ∈ 2ω1

{α < ω1 : F (f � α) = g(α)} is stationary.

Example.

♦ω1 (2,=) ⇒ Every ℵ1-dense set of reals X contains an ℵ1-dense set Y
such that X and Y are not order isomorphic.

Proof.

Fix X and Z ℵ1-dense subset of X such that X \ Z is uncountable.
Enumerate X \ Z as {xα : α < ω1}, and let H : 2ω → Aut(R) be Borel
and onto. Let F (s) = 0 iff |s| < ω or H(s � ω)(x|s|) ∈ X .

Given g , let Y = Z ∪ {xα : g(α) = 1}. Given an h ∈ Aut(R) consider
any f ∈ 2ω1 such that H(f � ω) = h.
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Sequential composition of invariants

Definition

Given i = (A,B,→) and j = (A′,B ′,→′), we define the sequential
composition i; j of i and j by

i; j = (A×A′B ,B×B ′,→′′) with (a, h)→′′ (b, b′) iff a→ b & h(b)→′ b′.

Remark: ||i; j|| = max{||i||, ||j||}.
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Maximal trees in P(ω)/fin.

A set T ⊆ [ω]ω is a maximal tree if

1 T is a tree (ordered by reverse ⊆∗), and

2 ∀C ∈ [ω]ω(∃T ∈ T such that T ⊆∗ C or ∃T0,T1 ∈ T incomparable
such that C ⊆∗ T0 ∩ T1).

Note that levels of the tree are incomparable families, not AD families.

(Campero-Cancino-H.-Miranda 2015)

♦ω1 (rσ; d) ⇒ There is a maximal tree in P(ω)/fin of size ω1.

Question

Does every maximal tree in P(ω)/fin have size at least d?
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Further small changes - The strongest weak diamond

Definition ♦ω1

S (ω1,=) - the Strongest weak diamond

Let S ⊆ ω1 be stationary.

∀F : 2<ω1 → ω1 ω1-definable ∃g : ω1 → ω1 ∀f ∈ 2ω1

{α∈ S : F (f � α) = g(α)} is stationary.

Observations:

♦ω1

S (ω1,=) + ||A,B,→ || ≤ ω1 ⇒ ♦ω1

S (A,B,→)

♦S ⇔ CH + ♦ω1

S (ω1,=).

Theorem

∀S ∈ NS(ω1)+ ♦ω1

S (ω1,=) holds in all canonical models.
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“All” parametrized diamonds hold in the Sacks model

Theorem

∀S ∈ NS(ω1)+ ♦ω1

S (ω1,=) holds in any canonical model.

combined with

Theorem (Zapletal 2008)

For every Borel cardinal invariant (A,B,→) if ||A,B,→ || < c can be
forced then V Sω2 |= ||A,B,→ || ≤ ω1.

gives

Corollary

V Sω2 |= ♦ω1 (A,B,→) for every Borel cardinal invariant (A,B,→) such
that ||A,B,→ || ≤ ω1 can be forced over any model without collapsing
ω2.
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Canonical models

The following hold in ALL canonical models:

All Whitehead groups of size ω1 are free (Shelah - ♦ω1

S (2,=))

Baumgartner’s theorem fails (Baumgartner - ♦ω1 (2,=))

p = q = ω1, a = b, r = u, s = sω . . . (MHD)

There is a non-metrizable separable Fréchet group.
(H.-Ramos - ♦(2,=))

There is a Cohen indestructible MAD family.
(H.-Guzmán - b = c + ♦(b))

There is a compact sequential space of sequential order > 2.
(Dow - b = c + Gaspar-Hernández-H. - ♦(b))

There is a compact weakly first countable space that is not first
countable.
(Abraham-Gorelic-Juhász - b = c + Gaspar-Hernández-H. - ♦(b))

There is a ccc forcing adding a real and not adding either a random
or a Cohen real.
(Brendle - cof(M) = c + Guzmán - ♦(cof(M))).
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Questions

Questions

1 Is ♦ω1 (ω1, <) consistent with ¬♦ω1 (ω1,=)?

2 Does every canonical model contain a P-point?

3 Does every canonical model contain a Suslin tree?

Thank you for your attention!!!
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