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Measuring non-compactness in a metric space

Theorem
Let (X,d) be a complete metric space and A C X. TFAE:

» Ais relatively compact.
» Ais totally bounded.
» Any sequence in A has a subsequence converging in X.
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Measures of noncompactness
Let (X, d) be a metric space and A C X.
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Measuring non-compactness in a metric space

Measures of noncompactness
Let (X, d) be a metric space and A C X.
» a(A) =inf{e > 0;A=J, Aj,diamA; < ¢}
[Kuratowski 1930]
» x(A) =inf{e > 0;3F C X finite : AC U(F,¢)}
[Gohberg, Goldenstein and Marcus 1957]
» xo(A) =inf{e > 0;3F C Afinite: AC U(F,¢)}

» B(A) = sup {{infca (x,) kn " co}; (xx) C A}
ca (Xg) (= osc(xk)) = infaeny diam{xx; k > n}

Proposition

» x(A) =0 < Als totally bounded
> X(A) < xo(A) < B(A) < a(A) < 2x(A)

Ondrej F.K. Kalenda Measuring noncompactness and discontinuity



Compactness and continuity of operators

Measuring non-compactness of an operator
T : X — Y ...abounded operator between Banach spaces.
» T is compact iff TBy is relatively compact.
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Compactness and continuity of operators

Compactness and continuity

T is compact & T* is compact
& T*]BY* is w*-to-norm continuous

Measuring discontinuity
» T*|g,. is w*-to-norm continuous iff V(y*) C By« :
(yr) w*-Cauchy = (T *y*) norm-Cauchy
> conty«_, . (T*) =sup{ca(T*y;);(y;) C By~ w*-Cauchy}

Compactness and continuity — quantitative relation

1 * *
5 COﬂtW*H”.H (T ) < X(T) < ContW*HH'H (T )
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Measuring weak non-compactness - de Blasi

approach

X ...a Banach space
A ...abounded subset of X.

Recall:
X(A) =inf{e > 0;3F C X finite : AC U(F,¢)}
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d(A,B) = sup{dist(a,B);a € A}
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Measuring weak non-compactness - de Blasi

approach

X ...aBanach space
A ...abounded subset of X.

Measuring how much a set sticks out of another one
d(A,B) = sup{dist(a,B);a € A}
Hausdorff measure of noncompactness reformulated
x(A) = inf{d(A,F); F C X finite}
= inf{a(A, K);K ¢ X compact}
De Blasi measure of weak noncompactness
» w(A) = inf{a(A, K); K c X weakly compact}
» [de Blasi 1977] w(A) = 0 & Ais relatively weakly compact
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Other measures of weak noncompactness

Let X be a Banach space and A C X a bounded set. TFAE
» Ais relatively weakly compact.

» [Banach-Alaoglu] A" ¢ X
» [Eberlein-Grothendieck] lim; lim; x*(x;) = lim; lim; x;*(x;)

whenever (x;) C A, (x*) C Bx~ and all limits exist.

» [Eberlein-Smulyan] Any (x,) C A has a w-cluster point in X.

» [James] Any x* € X* attains its max on A",

Ondrej F.K. Kalenda Measuring noncompactness and discontinuity



Other measures of weak noncompactness

Let X be a Banach space and A C X a bounded set. TFAE
» Ais relatively weakly compact.
» [Banach-Alaoglu] A" ¢ X
wk(A) = d(A",X)
» [Eberlein-Grothendieck] lim; lim; x*(x;) = lim; lim; x;*(x;)
whenever (x;) C A, (x*) C Bx~ and all limits exist.

» [Eberlein-Smulyan] Any (x,) C A has a w-cluster point in X.

» [James] Any x* € X* attains its max on A",

Ondrej F.K. Kalenda Measuring noncompactness and discontinuity



Other measures of weak noncompactness

Let X be a Banach space and A C X a bounded set. TFAE
» Ais relatively weakly compact.
» [Banach-Alaoglu] A" ¢ X
wk(A) = d(A",X)
» [Eberlein-Grothendieck] lim; lim; x*(x;) = lim; lim; x;*(x;)
whenever (x;) C A, (x*) C Bx~ and all limits exist.
Y(A) = sup{|lim; lim; x;*(x;) — limy lim; " () ;
(X)) C A, (x") C Bx~ and all limits exist}
» [Eberlein-Smulyan] Any (x,) C A has a w-cluster point in X.

» [James] Any x* € X* attains its max on A" .

Ondrej F.K. Kalenda Measuring noncompactness and discontinuity



Other measures of weak noncompactness

Let X be a Banach space and A C X a bounded set. TFAE
» A s relatively weakly compact.
» [Banach-Alaoglu] A" ¢ X
wk(A) = d(A",X)
» [Eberlein-Grothendieck] lim; lim; x*(x;) = lim; lim; x;*(x;)
whenever (x;) C A, (x*) C Bx~ and all limits exist.
Y(A) = sup{|lim; lim; x;*(x;) — limy lim; " () ;
(X)) C A, (x") C Bx~ and all limits exist}
» [Eberlein-Smulyan] Any (x,) C A has a w-cluster point in X.
wck(A) = sup{dist(clust,+((xn)), X) : (xn) C A}

9
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Other measures of weak noncompactness

Let X be a Banach space and A C X a bounded set. TFAE
» Ais relatively weakly compact.
» [Banach-Alaoglu] A" ¢ X
wk(A) = d(A",X)
» [Eberlein-Grothendieck] lim; lim; x*(x;) = lim; lim; x;*(x;)
whenever (x;) C A, (x*) C Bx~ and all limits exist.
Y(A) = sup{|lim; lim; x;*(x;) — limy lim; " () ;
(X)) C A, (x") C Bx~ and all limits exist}
» [Eberlein-Smulyan] Any (x,) C A has a w-cluster point in X.
wck(A) = sup{dist(clust,+((xn)), X) : (xn) C A}
» [James] Any x* € X* attains its max on A" .
Ja(A) = inf{r > 0;v¥x* € E* Ix** ¢ A"
X*(x*) = supx*(A) & dist(x™,X) <r}
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Quantitative characterizations of weak compactness

Theorem
wk(A) < v(A) < 2Ja(A) < 2wck(A) < 2wk(A)
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Quantitative characterizations of weak compactness

Theorem
WK(A) < (A) < 2Ja(A) < 2wcek(A) < 2wk(A)
Quantitative versions of

» Eberlein-Grothendieck theorem
[M.Fabian, P.Hajek, V.Montesinos and V.Zizler, 2005]

» Eberlein-Smulyan theorem
[C.Angosto and B.Cascales, 2008]

» James theorem [CKS 2012]
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Comparison of measures of weak non-compactness

> Easy: wk(A) < w(A) < x(A)
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Comparison of measures of weak non-compactness

» Easy: wk(A) < w(A) < x(A)
» In general: wk(A) and w(A) are not equivalent.
[K.Astala and H.-O.Tylli, 1990]
» WKk(A) = w(A) in the following spaces:
» [KKS 2013] X = co(T)
» [KKS 2013] X = L(p)

WK(A) = w(A) = inf{?up/(m—cXE)* du:c > 0, u(E) < +o0}

» [in preparation] X = N(H) or X = K(H)

Question
Let X = C(K). Are w(A) and wk(A) equivalent for bounded
subsets of X?
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Comparison of measures of weak non-compactness

» Easy: wk(A) < w(A) < x(A)
» In general: wk(A) and w(A) are not equivalent.
[K.Astala and H.-O.Tylli, 1990]
» WKk(A) = w(A) in the following spaces:
» [KKS 2013] X = co()
» [KKS 2013] X = L1(y)

WK(A) = w(A) = inf{?up/(m—cXE)* du:c > 0, u(E) < +o0}

» [in preparation] X = N(H) or X = K(H)

Question
Let X = C(K). Are w(A) and wk(A) equivalent for bounded
subsets of X? Is it true at least for K = [0, 1]?
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Comparison of measures of weak non-compactness I

Theorem
Let X be a Banach space.
» X is WCG iff
Ve >03(An)2, acoverof XVn e N:w(Ay) <e.
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Comparison of measures of weak non-compactness I

Theorem
Let X be a Banach space.
» X is WCG iff
Ve >03(An)2, acoverof XVn e N:w(Ay) <e.
[An exercise]
» X is a subspace of WCG iff
Ve > 03(An)a2, acoverof X Vn e N:wk(Ap) <e.
[M.Fabian, V.Montesinos and V.Zizler, 2004]
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Comparison of measures of weak non-compactness I

Theorem
Let X be a Banach space.
» X is WCG iff
Ve >03(An)2, acoverof XVn e N:w(Ay) <e.
[An exercise]
» X is a subspace of WCG iff
Ve > 03(An)a2, acoverof X Vn e N:wk(Ap) <e.
[M.Fabian, V.Montesinos and V.Zizler, 2004]

Remark
If w and wk are equivalent in C(K) spaces, it easily follows that
Eberlein compact spaces are preserved by continuous images.
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Weak compactness and continuity

LetT : X — Y be a bounded linear operator.
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Weak compactness and continuity

LetT : X — Y be a bounded linear operator.

T*|g,. W*-to-w continuous

0

T weakly compact & T* weakly compact
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T* Mackey-to-norm continuous

[Gantmacher 1940]
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w(X*, X) = topology of uniform convergence
on weakly compact subsets of X
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Weak compactness and continuity

LetT : X — Y be a bounded linear operator.

T*|g,. W*-to-w continuous

)
T weakly compact & T* weakly compact
) )
T* Mackey-to-norm continuous T Right-to-norm continuous

[Gantmacher 1940]

[Grothendieck 1953]
w(X*, X) = topology of uniform convergence
on weakly compact subsets of X
[Peralta, Villanueva, Maitland Wright and Ylinen 2007]
p(X, X*) = p(X**, X*)Ix
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X,Y ...Banach spaces

7 ...alocally convex topology on X

A .. .family of subsets of By «, closed to finite unions

o ...topology of uniform convergence of elements of A,
i.e., the topology generated by the seminorms
pa(X) = sup{|x*(x)|;x* € A}, A€ A.

Measuring o-non-Cauchyness (oscillation)

(y,) C Y abounded net

ca, (y,) = sup{infpa-diam{y,; v > 1p}; A € A}
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7 ...alocally convex topology on X

A .. .family of subsets of By «, closed to finite unions

o ...topology of uniform convergence of elements of A,
i.e., the topology generated by the seminorms
pa(X) = sup{|x*(x)|;x* € A}, A€ A.

Measuring o-non-Cauchyness (oscillation)

(y,) C Y abounded net

ca, (Yy) = sup{inf pa-diam{y,;v > vo}; A € A}
o

Measuring discontinuity of linear operators
T : X — Y bounded linear operator
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Measuring discontinuity

X,Y ...Banach spaces

7 ...alocally convex topology on X

A .. .family of subsets of By «, closed to finite unions

o ...topology of uniform convergence of elements of A,
i.e., the topology generated by the seminorms
pa(X) = sup{|x*(x)|;x* € A}, A€ A.

Measuring o-non-Cauchyness (oscillation)

(y,) C Y abounded net

ca, (Yy) = sup{inf pa-diam{y,;v > vo}; A € A}
o

Measuring discontinuity of linear operators

T : X — Y bounded linear operator
» cont,_, (T) = sup{ca, (Tx,); (X,) C Bx 7-Cauchy}
» cCr—o (T) = sup{ca, (Txn); (Xn) C Bx 7-Cauchy}
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Weak compactness and continuity — quantitative view

T : X — Y bounded linear operator

> [KKS 2013] $ cont,, . (T*) < w(T) < cont,,_, (T*)
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» [KKS 2013] 3 cont,,_, . (T) < w(T*) < cont, . (T)
> 2 conty s (T*) < WK(T*) < conty«—w (T*)

Ondrej F.K. Kalenda Measuring noncompactness and discontinuity



Weak compactness and continuity — quantitative view

T : X — Y bounded linear operator
> [KKS 2013] 3 cont,, . (T*) < w(T) < cont,, . (T*)
» [KKS 2013] 3 cont,,_, . (T) < w(T*) < cont, . (T)
> 2 conty s (T*) < WK(T*) < conty«—w (T*)

Quantitative Gantmacher theorem

» w(T) and w(T*) are incomparable.
[K.Astala and H.-O.Tylli, 1990]
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Weak compactness and continuity — quantitative view

T : X — Y bounded linear operator

> [KKS 2013] $ cont,, . (T*) < w(T) < cont,,_, (T*)

> [KKS 2013] 3 cont, . (T) < w(T*) < cont,, . (T)
> 2 conty s (T*) < WK(T*) < conty«—w (T*)
Quantitative Gantmacher theorem

» w(T) and w(T*) are incomparable.

[K.Astala and H.-O.Tylli, 1990]
> 2wK(T) < wk(T*) < 2wk(T)

[C.Angosto and B.Cascales, 2009]
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Weak compactness and continuity — quantitative view

T : X — Y bounded linear operator

> [KKS 2013] $ cont,, . (T*) < w(T) < cont,,_, (T*)

> [KKS 2013] 3 cont, . (T) < w(T*) < cont,, . (T)
> 2 conty s (T*) < WK(T*) < conty«—w (T*)
Quantitative Gantmacher theorem

» w(T) and w(T*) are incomparable.

[K.Astala and H.-O.Tylli, 1990]
> 2wK(T) < wk(T*) < 2wk(T)

[C.Angosto and B.Cascales, 2009]
Corollary

L conty-w (T*) < wk(T*) < 2wk(T) < 4contys—w (T*)
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Measuring Mackey non-compactness

Let A C X* be bounded.

xm(A) = sup{xo(AlL, | - ) : L € Bx weakly compact}
wm(A) = inf{a(A, K) : K ¢ X* Mackey compact}
Let X = Co(R2) (22 locally compact) and A C X* be bounded

» A is weakly compact < A is Mackey compact.
[A. Grothendieck, 1953]
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Measuring Mackey non-compactness

Let A C X* be bounded.

xm(A) = sup{xo(AlL, || - [[) : L C Bx weakly compact}
wm(A) = inf{a(A, K) : K ¢ X* Mackey compact}

Let X = Co(R2) (22 locally compact) and A C X* be bounded
» A is weakly compact < A is Mackey compact.

[A. Grothendieck, 1953]
2xm(A) < wm(A) = w(A) = wk(A) < Txm(A). [KS 2012]
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Measuring Mackey non-compactness

Let A ¢ X* be bounded.

xm(A) = sup{xo(AlL, | - l=) : L C Bx weakly compact}
wm(A) = inf{a(A, K) : K ¢ X* Mackey compact}

Let X = Co(R2) (22 locally compact) and A C X* be bounded
> %Xm(A) < wm(A) = w(A) = wk(A) < mxm(A). [KS 2012]

Question
Are the quantities y, and wy, equivalent in any dual space?
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Measuring Mackey non-compactness

Let A ¢ X* be bounded.

xm(A) = sup{xo(AlL. ||  lxc) : L € Bx weakly compact}
wm(A) = inf{a(A, K) : K ¢ X* Mackey compact}
Let X = Co(R2) (22 locally compact) and A C X* be bounded
> %Xm(A) < wm(A) = w(A) = wk(A) < mxm(A). [KS 2012]
Question
Are the quantities y, and wy, equivalent in any dual space?

Remark
%Xm(A) < wm(A) holds always.
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Mackey compactness and completely continuous

operators

LetT : X — Y be a bounded linear operator. TFAE:

Ondrej F.K. Kalenda Measuring noncompactness and discontinuity



Mackey compactness and completely continuous

operators

LetT : X — Y be a bounded linear operator. TFAE:

» T is completely continuous, i.e.,
(xn) weakly convergent = (Tx,) norm convergent.
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LetT : X — Y be a bounded linear operator. TFAE:
» T is completely continuous, i.e.,
(xn) weakly convergent = (Tx,) norm convergent.

» T is Dunford-Pettis, i.e.,
T (A) is norm-compact for each A C X weakly compact.
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Mackey compactness and completely continuous

operators

LetT : X — Y be a bounded linear operator. TFAE:
» T is completely continuous, i.e.,
(xn) weakly convergent = (Tx,) norm convergent.
» T is Dunford-Pettis, i.e.,
T (A) is norm-compact for each A C X weakly compact.
» [A.Grothendieck, 1953] T* is Mackey compact, i.e.,
T*(By+) is relatively Mackey compact.
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Mackey compactness and completely continuous

operators

LetT : X — Y be a bounded linear operator. TFAE:
» T is completely continuous, i.e.,
(xn) weakly convergent = (Tx,) norm convergent.

» T is Dunford-Pettis, i.e.,
T (A) is norm-compact for each A C X weakly compact.

» [A.Grothendieck, 1953] T* is Mackey compact, i.e.,
T*(By+) is relatively Mackey compact.

Quantitative version [KS 2012]
» dp(T) = sup{xo(TA); A C Bx weakly compact}
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Mackey compactness and completely continuous

operators

LetT : X — Y be a bounded linear operator. TFAE:
» T is completely continuous, i.e.,
(xn) weakly convergent = (Tx,) norm convergent.

» T is Dunford-Pettis, i.e.,
T (A) is norm-compact for each A C X weakly compact.

» [A.Grothendieck, 1953] T* is Mackey compact, i.e.,
T*(By+) is relatively Mackey compact.

Quantitative version [KS 2012]

» dp(T) = sup{xo(TA); A C By weakly compact}
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Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.
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Application: Dunford-Pettis property

Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.

LVWVYT X =Y:
T is weakly compact = T is completely continuous.

2. VY VT : Y = X:
T is weakly compact = T* is completely continuous.
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Application: Dunford-Pettis property

Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.

LVWVYT X =Y:
T* is weakly compact = T is completely continuous.

2. VY VT : Y = X:
T is weakly compact = T* is completely continuous.

VW VT : X =Y CCw—s || (T) < 2w(T*). [KKS 2013]
4. VY VT 0 Y = X cCyy (T*) <2w(T). [KKS 2013]
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Application: Dunford-Pettis property

Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.

LVWVYT X =Y:
T* is weakly compact = T is completely continuous.

2. VY VT : Y = X:
T is weakly compact = T* is completely continuous.

VW VT : X =Y CCw—s || (T) < 2w(T*). [KKS 2013]
4. VY VT 1Y = X2 cCpyoy (TF) < 2w(T). [KKS 2013]

Sketch 5
CCu— - (T) < CCpyy (T)
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Application: Dunford-Pettis property

Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.

LVWVYT X =Y:
T* is weakly compact = T is completely continuous.

2. VY VT : Y = X:
T is weakly compact = T* is completely continuous.

VW VT : X =Y CCw—s || (T) < 2w(T*). [KKS 2013]
4. VY VT 1Y = X2 cCpyoy (TF) < 2w(T). [KKS 2013]

Sketch casy
CCw— - (T) < CCpsyy (T) = cONLyy (T)
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Application: Dunford-Pettis property

Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.

LVWVYT X =Y:
T* is weakly compact = T is completely continuous.

2. VY VT : Y = X:
T is weakly compact = T* is completely continuous.

VW VT : X =Y CCw—s || (T) < 2w(T*). [KKS 2013]
4. VY VT 1Y = X2 cCpyoy (TF) < 2w(T). [KKS 2013]

Sketch
=] easy above .
CCW—>||~H (T) < CCp—>H-|| (T) < Contp%H,” (T) < ZW(T )
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Application: Dunford-Pettis property

Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.

LVYWVYT : X =>Y:
T* is weakly compact = T is completely continuous.

2. VY VT 1 Y = X:
T is weakly compact = T* is completely continuous.

3.WY VT 1 X = Y 1 cCyyp (T) < 2w(T*). [KKS 2013]
4.9Y VT 1Y = X & GOy (T*) < 2w(T). [KKS 2013]

Quantitative strengthening of DPP [KKS 2013]

» X has direct qDPP if
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Application: Dunford-Pettis property

Let X be a Banach space. The following assertions are
equivalent to the Dunford-Pettis property of X.

LVYWVYT : X =>Y:
T* is weakly compact = T is completely continuous.

2. VY VT 1 Y = X:
T is weakly compact = T* is completely continuous.

3.WY VT 1 X = Y 1 cCyyp (T) < 2w(T*). [KKS 2013]
4. WY VT 1Y = X & ey (T*) < 20(T). [KKS 2013]

Quantitative strengthening of DPP [KKS 2013]

» X has direct qDPP if
» X has dual gDPP if
FC > 0:VYVT 1Y — X :cCyy (TF) < Cwk(T)
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Thank you for your attention.

Ondrej F.K. Kalenda Measurin compactness and discontinuity
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