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Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Plan

Compactness in metric spaces, norm-compactness
Measuring non-compactness in a metric space
Norm-compactness and continuity of operators

Weak non-compactness
Two approaches to weak noncompactness
Comparison of the two approaches
Weak compactness and continuity

Mackey non-compactness
Measuring Mackey non-compactness
Mackey compactness and continuity

Application: Dunford-Pettis property
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Measuring non-compactness in a metric space

Theorem
Let (X , d) be a complete metric space and A ⊂ X . TFAE:

◮ A is relatively compact.
◮ A is totally bounded.
◮ Any sequence in A has a subsequence converging in X .
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[Gohberg, Goldenštein and Marcus 1957]

◮ χ0(A) = inf{ε > 0; ∃F ⊂ A finite : A ⊂ U(F , ε)}

◮ β(A) = sup
{
{inf ca (xkn) ; kn ր ∞}; (xk ) ⊂ A

}

ca (xk ) (= osc(xk )) = infn∈N diam{xk ; k ≥ n}
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◮ χ(A) = 0 ⇔ A is totally bounded
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Compactness and continuity of operators

Compactness and continuity
T is compact ⇔ T ∗ is compact

⇔ T ∗|BY∗
is w∗-to-norm continuous

Measuring discontinuity

◮ T ∗|BY∗
is w∗-to-norm continuous iff ∀(y∗

τ
) ⊂ BY∗ :

(y∗
τ
) w∗-Cauchy ⇒ (T ∗y∗

τ
) norm-Cauchy

◮ contw∗→‖·‖ (T ∗) = sup{ca (T ∗y∗
τ
) ; (y∗

τ
) ⊂ BY∗ w∗-Cauchy}

Compactness and continuity – quantitative relation

1
2

contw∗→‖·‖ (T
∗) ≤ χ(T ) ≤ contw∗→‖·‖ (T

∗)
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X . . . a Banach space
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Measuring weak non-compactness - de Blasi
approach

X . . . a Banach space
A . . . a bounded subset of X .

Measuring how much a set sticks out of another one
d̂(A,B) = sup{dist(a,B); a ∈ A}

Hausdorff measure of noncompactness reformulated
χ(A) = inf{d̂(A,F );F ⊂ X finite}

= inf{d̂(A,K );K ⊂ X compact}

De Blasi measure of weak noncompactness

◮ ω(A) = inf{d̂(A,K );K ⊂ X weakly compact}
◮ [de Blasi 1977] ω(A) = 0 ⇔ A is relatively weakly compact
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Other measures of weak noncompactness

Let X be a Banach space and A ⊂ X a bounded set. TFAE
◮ A is relatively weakly compact.

◮ [Banach-Alaoglu] A
w∗

⊂ X

◮ [Eberlein-Grothendieck] limi limj x∗
i (xj) = limj limi x∗

i (xj)
whenever (xj) ⊂ A, (x∗

i ) ⊂ BX∗ and all limits exist.

◮ [Eberlein-Šmulyan] Any (xn) ⊂ A has a w-cluster point in X .

◮ [James] Any x∗ ∈ X ∗ attains its max on A
w

.
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i ) ⊂ BX∗ and all limits exist}

◮ [Eberlein-Šmulyan] Any (xn) ⊂ A has a w-cluster point in X .
wck(A) = sup{dist(clustw*((xn)),X ) : (xn) ⊂ A}

◮ [James] Any x∗ ∈ X ∗ attains its max on A
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w∗

:
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[M.Fabian, P.Hájek, V.Montesinos and V.Zizler, 2005]
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Theorem
wk(A) ≤ γ(A) ≤ 2Ja(A) ≤ 2 wck(A) ≤ 2 wk(A)

Quantitative versions of
◮ Eberlein-Grothendieck theorem

[M.Fabian, P.Hájek, V.Montesinos and V.Zizler, 2005]
◮ Eberlein-Šmulyan theorem

[C.Angosto and B.Cascales, 2008]
◮ James theorem [CKS 2012]
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Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Comparison of measures of weak non-compactness

◮ Easy: wk(A) ≤ ω(A) ≤ χ(A)
◮ In general: wk(A) and ω(A) are not equivalent.

[K.Astala and H.-O.Tylli, 1990]
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Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Comparison of measures of weak non-compactness

◮ Easy: wk(A) ≤ ω(A) ≤ χ(A)
◮ In general: wk(A) and ω(A) are not equivalent.

[K.Astala and H.-O.Tylli, 1990]
◮ wk(A) = ω(A) in the following spaces:

◮ [KKS 2013] X = c0(Γ)
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Comparison of measures of weak non-compactness

◮ Easy: wk(A) ≤ ω(A) ≤ χ(A)
◮ In general: wk(A) and ω(A) are not equivalent.

[K.Astala and H.-O.Tylli, 1990]
◮ wk(A) = ω(A) in the following spaces:
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◮ Easy: wk(A) ≤ ω(A) ≤ χ(A)
◮ In general: wk(A) and ω(A) are not equivalent.

[K.Astala and H.-O.Tylli, 1990]
◮ wk(A) = ω(A) in the following spaces:

◮ [KKS 2013] X = c0(Γ)
◮ [KKS 2013] X = L1(µ)

wk(A) = ω(A) = inf{sup
f∈A

∫
(|f |−cχE )

+ dµ : c > 0, µ(E) < +∞}

◮ [in preparation] X = N(H) or X = K (H)

Question
Let X = C(K ). Are ω(A) and wk(A) equivalent for bounded
subsets of X? Is it true at least for K = [0, 1]?
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Theorem
Let X be a Banach space.

◮ X is WCG iff
∀ ε > 0 ∃ (An)

∞
n=1 a cover of X ∀n ∈ N : ω(An) < ε.
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Let X be a Banach space.

◮ X is WCG iff
∀ ε > 0 ∃ (An)

∞
n=1 a cover of X ∀n ∈ N : ω(An) < ε.

[An exercise]
◮ X is a subspace of WCG iff

∀ ε > 0 ∃ (An)
∞
n=1 a cover of X ∀n ∈ N : wk(An) < ε.

[M.Fabian, V.Montesinos and V.Zizler, 2004]
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Comparison of measures of weak non-compactness II

Theorem
Let X be a Banach space.

◮ X is WCG iff
∀ ε > 0 ∃ (An)

∞
n=1 a cover of X ∀n ∈ N : ω(An) < ε.

[An exercise]
◮ X is a subspace of WCG iff

∀ ε > 0 ∃ (An)
∞
n=1 a cover of X ∀n ∈ N : wk(An) < ε.

[M.Fabian, V.Montesinos and V.Zizler, 2004]

Remark
If ω and wk are equivalent in C(K ) spaces, it easily follows that
Eberlein compact spaces are preserved by continuous images.
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Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Weak compactness and continuity

Let T : X → Y be a bounded linear operator.

T ∗|BX∗
w∗-to-w continuous

m
T weakly compact ⇔ T ∗ weakly compact

[Gantmacher 1940]
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T ∗ Mackey-to-norm continuous

[Gantmacher 1940]
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Weak compactness and continuity

Let T : X → Y be a bounded linear operator.

T ∗|BX∗
w∗-to-w continuous

m
T weakly compact ⇔ T ∗ weakly compact

m m
T ∗ Mackey-to-norm continuous T Right-to-norm continuous

[Gantmacher 1940]

[Grothendieck 1953]
µ(X ∗,X ) = topology of uniform convergence

on weakly compact subsets of X

[Peralta, Villanueva, Maitland Wright and Ylinen 2007]
ρ(X ,X ∗) = µ(X ∗∗,X ∗)|X
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Measuring discontinuity

X ,Y . . . Banach spaces
τ . . . a locally convex topology on X
A . . . family of subsets of BY∗ , closed to finite unions
σ . . . topology of uniform convergence of elements of A,

i.e., the topology generated by the seminorms
ρA(x) = sup{|x∗(x)|; x∗ ∈ A}, A ∈ A.

Measuring σ-non-Cauchyness (oscillation)
(yν) ⊂ Y a bounded net

caσ (yν) = sup{inf
ν0

ρA- diam{yν ; ν ≥ ν0};A ∈ A}

Measuring discontinuity of linear operators
T : X → Y bounded linear operator

◮ contτ−σ (T ) = sup{caσ (Txν) ; (xν) ⊂ BX τ -Cauchy}
◮ ccτ−σ (T ) = sup{caσ (Txn) ; (xn) ⊂ BX τ -Cauchy}
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Weak compactness and continuity – quantitative view

T : X → Y bounded linear operator

◮ [KKS 2013] 1
2 contµ→‖·‖ (T ∗) ≤ ω(T ) ≤ contµ→‖·‖ (T ∗)
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Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Weak compactness and continuity – quantitative view

T : X → Y bounded linear operator

◮ [KKS 2013] 1
2 contµ→‖·‖ (T ∗) ≤ ω(T ) ≤ contµ→‖·‖ (T ∗)

◮ [KKS 2013] 1
2 contρ→‖·‖ (T ) ≤ ω(T ∗) ≤ contρ→‖·‖ (T )

◮
1
4 contw∗→w (T ∗) ≤ wk(T ∗) ≤ contw∗→w (T ∗)

Quantitative Gantmacher theorem

◮ ω(T ) and ω(T ∗) are incomparable.
[K.Astala and H.-O.Tylli, 1990]
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T : X → Y bounded linear operator

◮ [KKS 2013] 1
2 contµ→‖·‖ (T ∗) ≤ ω(T ) ≤ contµ→‖·‖ (T ∗)

◮ [KKS 2013] 1
2 contρ→‖·‖ (T ) ≤ ω(T ∗) ≤ contρ→‖·‖ (T )

◮
1
4 contw∗→w (T ∗) ≤ wk(T ∗) ≤ contw∗→w (T ∗)

Quantitative Gantmacher theorem

◮ ω(T ) and ω(T ∗) are incomparable.
[K.Astala and H.-O.Tylli, 1990]

◮
1
2 wk(T ) ≤ wk(T ∗) ≤ 2 wk(T )

[C.Angosto and B.Cascales, 2009]
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Weak compactness and continuity – quantitative view

T : X → Y bounded linear operator

◮ [KKS 2013] 1
2 contµ→‖·‖ (T ∗) ≤ ω(T ) ≤ contµ→‖·‖ (T ∗)

◮ [KKS 2013] 1
2 contρ→‖·‖ (T ) ≤ ω(T ∗) ≤ contρ→‖·‖ (T )

◮
1
4 contw∗→w (T ∗) ≤ wk(T ∗) ≤ contw∗→w (T ∗)

Quantitative Gantmacher theorem

◮ ω(T ) and ω(T ∗) are incomparable.
[K.Astala and H.-O.Tylli, 1990]

◮
1
2 wk(T ) ≤ wk(T ∗) ≤ 2 wk(T )

[C.Angosto and B.Cascales, 2009]

Corollary
1
4 contw∗→w (T ∗) ≤ wk(T ∗) ≤ 2 wk(T ) ≤ 4 contw∗→w (T ∗)
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Measuring Mackey non-compactness

Let A ⊂ X ∗ be bounded.
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Measuring Mackey non-compactness

Let A ⊂ X ∗ be bounded.

χm(A) = sup{χ0(A|L, ‖ · ‖∞) : L ⊂ BX weakly compact}

ωm(A) = inf{d̂(A,K ) : K ⊂ X ∗ Mackey compact}

Let X = C0(Ω) (Ω locally compact) and A ⊂ X ∗ be bounded

◮
1
2χm(A) ≤ ωm(A) = ω(A) = wk(A) ≤ πχm(A). [KS 2012]

Question
Are the quantities χm and ωm equivalent in any dual space?

Remark
1
2χm(A) ≤ ωm(A) holds always.
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Mackey compactness and completely continuous
operators

Let T : X → Y be a bounded linear operator. TFAE:
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Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Mackey compactness and completely continuous
operators

Let T : X → Y be a bounded linear operator. TFAE:

◮ T is completely continuous, i.e.,
(xn) weakly convergent ⇒ (Txn) norm convergent.

◮ T is Dunford-Pettis, i.e.,
T (A) is norm-compact for each A ⊂ X weakly compact.

◮ [A.Grothendieck, 1953] T ∗ is Mackey compact, i.e.,
T ∗(BY∗) is relatively Mackey compact.

Quantitative version [KS 2012]

◮ dp(T ) = sup{χ0(TA);A ⊂ BX weakly compact}
◮

1
2χm(T ∗) ≤ dp(T ) ≤ ccw→‖·‖ (T ) ≤ 4χm(T ∗)

Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Plan

Compactness in metric spaces, norm-compactness
Measuring non-compactness in a metric space
Norm-compactness and continuity of operators

Weak non-compactness
Two approaches to weak noncompactness
Comparison of the two approaches
Weak compactness and continuity

Mackey non-compactness
Measuring Mackey non-compactness
Mackey compactness and continuity

Application: Dunford-Pettis property
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3. ∀Y ∀T : X → Y : ccw→‖·‖ (T ) ≤ 2ω(T ∗). [KKS 2013]

4. ∀Y ∀T : Y → X : ccw→‖·‖ (T ∗) ≤ 2ω(T ). [KKS 2013]

Quantitative strengthening of DPP [KKS 2013]

◮ X has direct qDPP if
∃C > 0 : ∀Y∀T : X → Y : ccw→‖·‖ (T ) ≤ C wk(T ∗)

◮ X has dual qDPP if
∃C > 0 : ∀Y∀T : Y → X : ccw→‖·‖ (T ∗) ≤ C wk(T )

Ondřej F.K. Kalenda Measuring noncompactness and discontinuity



Thank you for your attention.
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