Dimension of inverse limits with set-valued functions

Hisao Kato

University of Tsukuba, Tsukuba-Shi, Japan

The 12th Prague Topological Symposium, Prague, Czech, July 25-29, 2016

Abstract

Dimension of inverse limits with set-valued functions

3 Examples

Abstract

Abstract: In this talk, we investigate dimension of inverse limits with set-valued functions.

Dimension of inverse limits with set-valued functions

Let X_i $(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i,i+1}: X_{i+1} \to 2^{X_i}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. The *inverse limit* of the inverse sequence $\{X_i, f_{i,i+1}\}_{i=1}^{\infty}$ is the space

$$\varprojlim \{X_i, f_{i,i+1}\} = \{(x_i)_{i=1}^{\infty} \mid x_i \in f_{i,i+1}(x_{i+1}) \text{ for each } i \in \mathbb{N}\} \subset \prod_{i=1}^{\infty} X_i$$

which has the topology inherited as a subspace of the product space $\prod_{i=1}^{\infty} X_i$.

In particular, if $f: X \to 2^X$ is an upper semi-continuous function, we consider the inverse sequence $\{X, f\} = \{X_i, f_{i,i+1}\}$, where $X_i = X, f_{i,i+1} = f$ $(i \in \mathbb{N})$. We put

$$\varprojlim\{X,f\}=\{(x_i)_{i=1}^\infty\mid x_i\in f(x_{i+1}) \text{ for each } i\in\mathbb{N}\}.$$

Theorem 2.1

Let X_i $(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i,i+1}: X_{i+1} \to X_i$ be a map (single valued upper semi-continuous function) for each $i \in \mathbb{N}$. Then $\dim \varprojlim \{X_i, f_{i,i+1}\} \leq \sup \{\dim X_i \mid i \in \mathbb{N}\}$.

Concerning dimension of inverse limits with set-valued functions, the following theorems have been obtained.

Theorem 2.2 (Banič)

Suppose that X is a continuum and A a closed subset of X. Let $g: X \to X$ be a (continuous) map. If $f: X \to 2^X$ is the upper semi-continuous function such that $G(f) = G(g) \cup (A \times X)$, then $\dim \varprojlim \{X, f\} \in \{\dim X, \infty\}$.

Theorem 2.3 (Nall)

Let X_i $(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i,i+1}: X_{i+1} \to 2^{X_i}$ be an upper semi-continuous function for each $i \in \mathbb{N}$ such that one of the following conditions (1) and (2) is satisfied; (1) dim $f_{i,i+1}(x) = 0$ for each $i \in \mathbb{N}$ and $x \in X_{i+1}$, i.e., $D_1(f_{i,i+1}) = \emptyset$. (2) dim $f_{i,i+1}^{-1}(x) = 0$ for each $i \in \mathbb{N}$ and $x \in X_i$, i.e., $D_1(f_{i,i+1}^{-1}) = \emptyset$. Then dim $\varprojlim \{X_i, f_{i,i+1}\} \leq \sup\{\dim X_i \mid i \in \mathbb{N}\}$.

Theorem 2.4 (Ingram)

Let X_i $(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i,i+1}: X_{i+1} \to 2^{X_i}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. If for each i > 0, Z_i is a closed 0-dimensional subset of X_i such that $g_{i,i+1} = f_{i,i+1}|(X_{i+1} - Z_{i+1})$ is a mapping and $f_{i,j}^{-1}(Z_i)$ is 0-dimensional for each $i \geq 2$ and j > i, then $\dim \varprojlim \{X_i, f_{i,i+1}\} \leq \sup\{\dim X_i \mid i \in \mathbb{N}\}$.

To evaluate dimension of generalized inverse limits, we need the following notations.

For a function $f: X \to 2^Y$, we put

$$D_1(f) = \{x \in X \mid \dim f(x) \ge 1\}, \ D_1(f^{-1}) = \{y \in Y \mid \dim f^{-1}(y) \ge 1\},$$

where $f^{-1}(B) = \{x \in X | f(x) \cap B \neq \emptyset\}$ for a subset B of Y.

Let X_i $(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i,i+1}: X_{i+1} \to 2^{X_i}$ be an upper semi-continuous function for each $i \in \mathbb{N}$.

Let $y \in X_n$ and $x \in X_{n'}$ $(n \le n')$. We consider the following conditions:

$$\boxed{y \leftarrow x} : y \in f_{n,n'}(x)$$

$$\boxed{x \lhd} : x \in D_1(f_{n',n'+1}^{-1})$$

$$\boxed{\triangleright y} : n \ge 2 \text{ and } y \in D_1(f_{n-1,n})$$

Also, let $x \in X_m$ and $y \in X_{m'}$ $(m+2 \le m')$. We consider the following condition:

$$x \longleftrightarrow riangle y$$
: $y \in D_1(f_{m'-1,m'})$ and $\dim[f_{m,m'-1}^{-1}(x) \cap f_{m'-1,m'}(y)] \ge 1$

In particular, we also consider the following condition:

$$oxed{x \lozenge y}$$
: $m' = m+2, x \in D_1(f_{m,m+1}^{-1}), y \in D_1(f_{m+1,m+2})$ and $\dim[f_{m,m+1}^{-1}(x) \cap f_{m+1,m+2}(y)] \geq 1.$

For each $x_n \in X_n$ with $x_n \in D_1(f_{n,n+1}^{-1})$, we consider the following sequence:

$$\rhd y_{m_1} \hookleftarrow \rhd y_{m_2} \hookleftarrow \rhd y_{m_3} \hookleftarrow \cdots \hookleftarrow \rhd y_{m_{k-1}} \hookleftarrow \rhd y_{m_k} \leftarrow x_n \lhd,$$

where $2 \leq m_1, m_k \leq n, m_i + 2 \leq m_{i+1}$ (i = 1, 2, ..., k - 1) and $y_{m_i} \in X_{m_i}$ (i = 1, 2, ..., k). In this case, we say that the sequence $\{y_{m_i}, x_n | 1 \leq i \leq k\}$ is an expand-contract sequence in $\{X_i, f_{i,i+1}\}_{i=1}^{\infty}$ with length k. For any expand-contract sequence

we put $d(S) = \sum_{i=1}^k \dim f_{m_i-1,m_i}(y_{m_i})$. We define the index $\tilde{J}(\{X_i,f_{i,i+1}\})$ as follows.

$$\tilde{J}(\{X_i, f_{i,i+1}\})$$

= $\sup\{d(S) \mid S \text{ is an expand-contract sequence in } \{X_i, f_i\}_{i=1}^{\infty}\}.$

The following is the main theorem of my talk.

Theorem 2.5

Let X_i $(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i,i+1}: X_{i+1} \to 2^{X_i}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. Suppose that dim $D_1(f_{i,i+1}) \leq 0$ $(i \in \mathbb{N})$. Then

$$\dim \varprojlim \{X_i, f_{i,i+1}\} \leq \tilde{\textit{J}}\big(\{X_i, f_{i,i+1}\}\big) + \sup \{\dim X_i \mid i \in \mathbb{N}\}.$$

Theorem 2.6

Let X_i ($i \in \mathbb{N}$) be a sequence of 1-dimensional compacta and let $f_{i,i+1}: X_{i+1} \to 2^{X_i}$ be a surjective upper semi-continuous function for each $i \in \mathbb{N}$. Suppose that each $i \geq 2$, Z_i is a 0-dimensional closed subset of X_i such that $f_{i,i+1}|X_{i+1}-Z_{i+1}:(X_{i+1}-Z_{i+1})\to X_i$ is a mapping for each $x\in X_{i+1}-Z_{i+1}$ and $i\in \mathbb{N}$. Then

$$\tilde{\textit{J}}(\{\textit{X}_i,\textit{f}_{i,i+1}\}) \leq \dim \varprojlim \{\textit{X}_i,\textit{f}_{i,i+1}\} \leq \tilde{\textit{J}}(\{\textit{X}_i,\textit{f}_{i,i+1}\}) + 1.$$

Moreover, if there is an expand-contract sequence

$$\triangleright y_{m_1} \leftarrow \triangleright y_{m_2} \leftarrow \triangleright \cdots \leftarrow \triangleright y_{m_{k-1}} \leftarrow \triangleright y_{m_k} \leftarrow x_n \triangleleft$$

in $\{X_i, f_{i,i+1}\}$ with length $\tilde{J}(\{X_i, f_{i,i+1}\}) = k$ such that $\dim \pi_n^{-1}(x_n) > 0$, then $\dim \varprojlim \{X_i, f_{i,i+1}\} = \tilde{J}(\{X_i, f_{i,i+1}\}) + 1$, where $\pi_n : \varprojlim \{X_i, f_{i,i+1}\}_{i \geq n} \to X_n$ is the projection defined by $\pi_n(x_n, x_{n+1}, \cdots) = x_n$.

Now, we will define another index $I(\{X_i, f_{i,i+1}\})$ as follows. Let $\{X_i, f_{i,i+1}\}_{i=1}^{\infty}$ be an inverse sequence with set-valued functions. Also, let $x \in X_m$ and $y \in X_{m'}$ $(m+2 \le m')$. We consider the following condition:

$$x \lhd \succ y$$
: $x \in D_1(f_{m,m+1}^{-1})$ and $\dim[f_{m,m+1}^{-1}(x) \cap f_{m+1,m'-1}(y)] \ge 1$

Note that $x \lozenge y$ implies $x \prec \triangleright y$ and $x \vartriangleleft \succ y$.

For each $x_n \in X_n$ with $x_n \in D_1(f_{n,n+1}^{-1})$, we consider the following sequence:

$$\triangleright x_n \leftarrow y_{m_1} \triangleleft \succ y_{m_2} \triangleleft \succ y_{m_3} \triangleleft \succ \cdots \triangleleft \succ y_{m_{k-1}} \triangleleft \succ y_{m_k} \triangleleft$$

where
$$n \leq m_1, m_i + 2 \leq m_{i+1}$$
 $(i = 1, 2, ..., k - 1)$ and $y_{m_i} \in X_{m_i}$ $(i = 1, 2, ..., k)$.

In this case, we say that the sequence $(x_n, y_{m_1}, y_{m_2}, \cdots, y_{m_k})$ is an inverse expand-contract sequence in $\{X_i, f_{i,i+1}\}_{i=1}^{\infty}$ with length k. Note that a sequence $(x_n, y_{m_1}, y_{m_2}, \cdots, y_{m_k})$ is an inverse expand-contract sequence in the inverse sequence $\{X_i, f_{i,i+1}\}_{i=1}^{\infty}$ if and only if the sequence $(y_{m_k}, y_{m_{k-1}}, \cdots, y_{m_1}, x_n)$ is an expand-contract sequence in the direct sequence $\{X_i, f_{i,i+1}^{-1}\}_{i=1}^{\infty}$.

For any inverse expand-contract sequence

$$S: \triangleright x_n \leftarrow y_{m_1} \lhd \succ y_{m_2} \lhd \succ y_{m_3} \lhd \succ \cdots \lhd \succ y_{m_{k-1}} \lhd \succ y_{m_k} \lhd$$

we put $d(S) = \sum_{i=1}^k \dim f_{m_i,m_i+1}^{-1}(y_{m_i})$. We define the index $\tilde{I}(\{X_i,f_{i,i+1}\})$ as follows.

$$\tilde{I}(\{X_i, f_{i,i+1}\})$$

= $\sup\{d(S) \mid S \text{ is an inverse expand-contract sequence in } \{X_i, f_{i,i+1}\}\}$. If there is no inverse expand-contract sequence in $\{X_i, f_{i,i+1}\}_{i=1}^{\infty}$, we put $\tilde{I}(\{X_i, f_{i,i+1}\}) = 0$. In general,

$$\tilde{J}(\{X_i, f_{i,i+1}\}) \neq \tilde{I}(\{X_i, f_{i,i+1}\}).$$

Theorem 2.7

Let X_i $(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i,i+1}: X_{i+1} \to 2^{X_i}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. Suppose that $\dim D_1(f_{i,i+1}^{-1}) \leq 0$ $(i \in \mathbb{N})$. Then

$$\dim \underline{\lim} \{X_i, f_{i,i+1}\} \leq \tilde{I}(\{X_i, f_{i,i+1}\}) + \sup \{\dim X_i \mid i \in \mathbb{N}\}.$$

Examples

Example 1. Let $n \in \mathbb{N}$ with $n \geq 2$ and let $f: I \to C(I)$ be the surjective upper semi-continuous function defined by f(x) = 0 $(x \in [0, 1/n))$ and for $1 \leq i \leq n-1$, $f(i/n) = [(i-1)/n, i/n], f(x) = i/n (x \in (i/n, (i+1)/n)), f(1) = [(n-1)/n, 1]$. Then

$$\triangleright 1/n \lozenge 2/n \lozenge \cdots \lozenge (n-1)/n \lhd$$

is a maximal expand-contract sequence and hence $\tilde{J}(\{I,f\}) = n-1$. In fact, we see that $\varprojlim\{I,f\}$ is an n-dimensional stepwise polyhedron.

Example 2. There is an inverse sequence $\{I_i, f_{i,i+1}\}$ of intervals with surjective upper semi-continuous functions such that dim $D_1(f_{i,i+1}) \leq 0$ $(i \in \mathbb{N})$ and

$$0=\dim\varprojlim\{\mathit{I}_{i},\mathit{f}_{i,i+1}\}\neq \tilde{\mathit{J}}(\{\mathit{I}_{i},\mathit{f}_{i,i+1}\})+1=2.$$

Let C be a Cantor set in [0,1/2]. Let $u:C\to [0,1/2]$ be a surjective map. Consider the following surjective upper semi-continuous functions $f_{i,i+1}:I_{i+1}\to 2^{I_i}$ $(i\in\mathbb{N})$:

- (1) $f_{1,2}(x) = u^{-1}(x)$ $(x \in [0, 1/2])$ and $f_{1,2}|[1/2, 1] : [1/2, 1] \to I$ is an onto map.
- (2) $f_{2,3}(x) = x$ ($x \in [0, 1/2)$), $f_{2,3}(1/2) = [0, 1/2]$,
- $f_{2,3}(x) = x \ (x \in (1/2,1]).$
- (3) $f_{3,4}(x) = x$ ($x \in [0, 1/2)$), $f_{3,4}(x) = \{1/2, x\}$ ($x \in [1/2, 1]$).

Also, we will construct $f_{i,i+1}$ $(i \ge 4)$ as follows. For any $\epsilon > 0$, we can construct a surjective upper semi-continuous function $f_{\epsilon}: [1/2,1] \to 2^{[1/2,1]}$ such that for some sequence

$$1/2 = t_0 < t_1 < t_2 < \cdots < t_{s-1} < t_s = 1,$$

- (a) $f_{\epsilon}(1/2) = 1/2, f_{\epsilon}(1) = 1$,
- (b) $f_{\epsilon}|(t_i,t_{i+1})$ $(i=1,2,...,t_{s-1})$ is an injective map and
- $f_{\epsilon}([1/2,1]) = [1/2,1]$,
- (c) $f_{\epsilon}(t_i)$ is two point set for $i=1,2,...,t_{s-1}$ and each diameter of $G(f_{\epsilon}|(t_i,t_{i+1}))$ ($\subset G(f_{\epsilon})$) is less than ϵ .

By use of maps $f_{\epsilon}:[1/2,1]\to 2^{[1/2,1]}$ for sufficiently small $\epsilon>0$ and by induction on $i\ (\geq 4)$ we can construct surjective upper-semi continuous functions $f_{i,i+1}:I_{i+1}\to 2^{I_i}$ such that $f_{i,i+1}|[0,1/2]=id$ and $\dim\varprojlim\{[1/2,1],f_{i,i+1}|[1/2,1]\}_{i=4}^{\infty}=0$. Note that

$$> x_3 = 1/2 \leftarrow x_3 = 1/2 \lhd (x_3 \in I_3).$$

In fact, $J(\{I_i,f_{i,i+1}\})=1$. Since $\dim \varprojlim \{[1/2,1],f_{i,i+1}|[1/2,1]\}_{i=4}^{\infty}=0$, we see that $\dim \pi_3^{-1}(x_3)=0$ and hence $\dim \varprojlim \{I_i,f_{i,i+1}\}=0$.