
Squares of function spaces and function
spaces on squares

Miko laj Krupski

University of Warsaw

TOPOSYM, 2016

Miko laj Krupski University of Warsaw Squares of function spaces and function spaces on squares



For a Tychonoff space X , Cp(X ) is the space of continuous
real-valued functions on X , with the pointwise topology.

Borsuk-Dugundji Extension Theorem

If X is metrizable and A ⊆ X is closed, then there exists a linear
continuous function φ : Cp(A)→ Cp(X ) such that φ(f ) � A = f ,
for any f ∈ Cp(A).

Corollary

If X is metrizable and A ⊆ X is closed, then
Cp(X ) ≈ Cp(A)× {f ∈ Cp(X ) : f � A = 0} ≈ Cp(A)× Cp(X/A)

It follows that, e.g.

Cp([0, 1]) ≈ Cp([0, 1])× Cp([0, 1])

Cp(R) ≈ Cp(R)× Cp(R)
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Problem (Arhangel’skii), 1978, 1990

Is it true that Cp(X ) is homeomorphic to Cp(X )× Cp(X ) provided
X is an infinite ’nice’ topological space, e.g. is compact or
metrizable?

Some motivations:

Related to a more general question: Does Cp(X ) space has
’good’ factorization properties?

Many natural examples of infinite-dimensional linear
topological spaces possess good factorization properties.
Factorization properties help constructing homeomorphisms
between function spaces.

Related to another important question: Which topological
properties of Cp(X ) are productive?

Open question: Suppose that Cp(X ) is Lindelöf. Is it true
that Cp(X )× Cp(X ) is Lindelöf?
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Problem (Arhangel’skii, 1978)

Is it true that Cp(X ) is homeomorphic to Cp(X )× Cp(X ) provided
X is infinite compact?

Theorem (Gul’ko / Marciszewski, 1988)

No, there exists an infinite compact (nonmetrizable) space X such
that Cp(X ) is not homeomorphic to Cp(X )× Cp(X ).

Gul’ko example

Consider X = [0, ω1], then Cp(X ) 6≈ Cp(X )× Cp(X ).

Marciszewski example

X = ω ∪ {pA : A ∈ A} ∪ {∞}, where A is a suitable almost
disjoint family on ω. Points in ω are isolated, neighborhoods of pA
are of the form {pA} ∪ (A \ F ), where F is finite.
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Problem (Arhangel’skii, 1990)

Is it true Cp(X ) is (linearly) homeomorphic to Cp(X )× Cp(X )
provided X is infinite metrizable?

Theorem (Pol, 1995)

There is an infinite metrizable (compact) space X with Cp(X ) not
linearly homeomorphic to Cp(X )× Cp(X ).

Theorem (van Mill, Pelant, Pol, 2003)

There is an infinite metrizable (compact) space X with Cp(X ) not
uniformly homeomorphic to Cp(X )× Cp(X ).

van Mill, Pelant, Pol example

X = Cook continuum

A nontrivial metrizable continuum M is a Cook continuum if it is
rigid, i.e. for any subcontinuum C ⊆ M, each continuous function
f : C → M is either the identity or f = const.
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Theorem (K. & Marciszewski, 2015)

There is an infinite zero-dimensional subspace B of the real line (a
rigid Bernstein set), such that Cp(B) is not homeomorphic to
Cp(B)× Cp(B).

The rigid Bernstein set B

Let {(Cα, fα) : α < 2ω} be the collection of all pairs (C , f ),
where C is a copy of the Cantor set in R and f : C → R is a
continuous map with uncountable range f (C ) disjoint from C .

Choose inductively distinct points x0, y0, . . . , xα, yα, . . . with
xα ∈ Cα and yα = fα(xα)

We put B = {xα : α < 2ω}.

B is rigid in the following sense: If G is an uncountable Gδ-subset
of B, then for each continuous function f : G → B there exists an
uncountable Gδ-subset G ′ of G such that the restriction f � G ′ is
either the identity or is constant.

Miko laj Krupski University of Warsaw Squares of function spaces and function spaces on squares



Theorem (K. & Marciszewski, 2015)

There is an infinite zero-dimensional subspace B of the real line (a
rigid Bernstein set), such that Cp(B) is not homeomorphic to
Cp(B)× Cp(B).

The rigid Bernstein set B

Let {(Cα, fα) : α < 2ω} be the collection of all pairs (C , f ),
where C is a copy of the Cantor set in R and f : C → R is a
continuous map with uncountable range f (C ) disjoint from C .

Choose inductively distinct points x0, y0, . . . , xα, yα, . . . with
xα ∈ Cα and yα = fα(xα)

We put B = {xα : α < 2ω}.

B is rigid in the following sense: If G is an uncountable Gδ-subset
of B, then for each continuous function f : G → B there exists an
uncountable Gδ-subset G ′ of G such that the restriction f � G ′ is
either the identity or is constant.

Miko laj Krupski University of Warsaw Squares of function spaces and function spaces on squares



Theorem (K. & Marciszewski, 2015)

There is an infinite zero-dimensional subspace B of the real line (a
rigid Bernstein set), such that Cp(B) is not homeomorphic to
Cp(B)× Cp(B).

The rigid Bernstein set B

Let {(Cα, fα) : α < 2ω} be the collection of all pairs (C , f ),
where C is a copy of the Cantor set in R and f : C → R is a
continuous map with uncountable range f (C ) disjoint from C .

Choose inductively distinct points x0, y0, . . . , xα, yα, . . . with
xα ∈ Cα and yα = fα(xα)

We put B = {xα : α < 2ω}.

B is rigid in the following sense: If G is an uncountable Gδ-subset
of B, then for each continuous function f : G → B there exists an
uncountable Gδ-subset G ′ of G such that the restriction f � G ′ is
either the identity or is constant.

Miko laj Krupski University of Warsaw Squares of function spaces and function spaces on squares



Theorem (K. & Marciszewski, 2015)

There is an infinite zero-dimensional subspace B of the real line (a
rigid Bernstein set), such that Cp(B) is not homeomorphic to
Cp(B)× Cp(B).

The rigid Bernstein set B

Let {(Cα, fα) : α < 2ω} be the collection of all pairs (C , f ),
where C is a copy of the Cantor set in R and f : C → R is a
continuous map with uncountable range f (C ) disjoint from C .

Choose inductively distinct points x0, y0, . . . , xα, yα, . . . with
xα ∈ Cα and yα = fα(xα)

We put B = {xα : α < 2ω}.

B is rigid in the following sense: If G is an uncountable Gδ-subset
of B, then for each continuous function f : G → B there exists an
uncountable Gδ-subset G ′ of G such that the restriction f � G ′ is
either the identity or is constant.

Miko laj Krupski University of Warsaw Squares of function spaces and function spaces on squares



Theorem (K. & Marciszewski, 2015)

There is an infinite zero-dimensional subspace B of the real line (a
rigid Bernstein set), such that Cp(B) is not homeomorphic to
Cp(B)× Cp(B).

The rigid Bernstein set B

Let {(Cα, fα) : α < 2ω} be the collection of all pairs (C , f ),
where C is a copy of the Cantor set in R and f : C → R is a
continuous map with uncountable range f (C ) disjoint from C .

Choose inductively distinct points x0, y0, . . . , xα, yα, . . . with
xα ∈ Cα and yα = fα(xα)

We put B = {xα : α < 2ω}.

B is rigid in the following sense: If G is an uncountable Gδ-subset
of B, then for each continuous function f : G → B there exists an
uncountable Gδ-subset G ′ of G such that the restriction f � G ′ is
either the identity or is constant.

Miko laj Krupski University of Warsaw Squares of function spaces and function spaces on squares



Theorem (K. & Marciszewski, 2015)

There is an infinite zero-dimensional subspace B of the real line (a
rigid Bernstein set), such that Cp(B) is not homeomorphic to
Cp(B)× Cp(B).

The rigid Bernstein set B

Let {(Cα, fα) : α < 2ω} be the collection of all pairs (C , f ),
where C is a copy of the Cantor set in R and f : C → R is a
continuous map with uncountable range f (C ) disjoint from C .

Choose inductively distinct points x0, y0, . . . , xα, yα, . . . with
xα ∈ Cα and yα = fα(xα)

We put B = {xα : α < 2ω}.

B is rigid in the following sense: If G is an uncountable Gδ-subset
of B, then for each continuous function f : G → B there exists an
uncountable Gδ-subset G ′ of G such that the restriction f � G ′ is
either the identity or is constant.

Miko laj Krupski University of Warsaw Squares of function spaces and function spaces on squares



Theorem (Marciszewski, 2000)

Suppose that X and Y are metrizable. Let n ∈ N and suppose
that Ψ : Cp(X )→ Cp(Y ) is a homeomorphism with Ψ(0) = 0.

Then Y =
⋃

r∈N Gr for some Gδ-subsets Gr such that:
For every r ∈ N there are continuous maps f r1 , . . . , f

r
pr : Gr → X

and m ∈ N such that, for any y ∈ Gr , Ψ(OX (A, 1
m )) ⊆ OY (y , 1n ),

where A = {f r1 (y), . . . , f rpr (y)}.

We can identify Cp(B)× Cp(B) with Cp(B ⊕ B)

Using rigidity of B we can conclude that the mapping in the
above theorem, restricted to an uncountable Gδ, are either the
identity or are constant
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Define a mapping ϕ : R× R→ R
ϕ(t1, t2) = Φ−1(t1v1 + t2v2)(c), where v1, v2 ∈ Cp(B ⊕ B)
and c ∈ B are suitably chosen.

ϕ maps a connected set onto a set which is not connected, a
contradiction.
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Open questions

Question

Let X be an infinite compact metrizable space. Is it true that
Cp(X ) is homeomorphic to Cp(X )× Cp(X )?

A natural candidate for a counterexample is the Cook continuum
M used in the context of linear and uniform homeomorphisms.
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Countable spaces.

It is well known that, for any countable metrizable nondiscrete
spaces X and Y we have Cp(X ) ≈ Cp(Y ). It follows that if X is
countable metrizable then Cp(X ) ≈ Cp(X ⊕ X ) = Cp(X )× Cp(X )

What happens if we drop the metrizability assumption? More
precisely:

Question

Suppose that X is an infinite countable space. Is it true that
Cp(X ) ≈ Cp(X )× Cp(X )?

Question

Suppose that X is an infinite countable metrizable space. Is it true
that Cp(X ) is linearly homeomorphic to Cp(X )× Cp(X )?

’Yes’ if X is either non-scattered or is scattered of height ≤ ω
(Baars, de Groot, 1992).
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Theorem (Arhangel’skii, 1990)

Suppose that X is an infinite Polish zero-dimensional space which
is either compact or not σ-compact.

Then Cp(X ) is linearly
homeomorphic to Cp(X )× Cp(X ).

Corollary

If X is a metrizable space with Cp(X ) 6≈ Cp(X )× Cp(X ), then X
cannot be simultaneously compact and zero-dimensional.

What happens if a Polish zero-dimensional space X is σ-compact:

Question

Suppose that X is a Polish zero-dimensional σ-compact space. Is it
true that Cp(X ) is (linearly) homeomorphic to Cp(X )× Cp(X )?
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Continuous surjections.

The following old problem remains open:

Problem (Arhangel’skii, 1990)

Is it true that Cp(X ) can always be continuously mapped onto its
own square Cp(X )× Cp(X )?

Examples given by Gul’ko and Marciszewki in the context of
homeomorphisms cannot serve as a counterexample here.

Theorem (Marciszewski, 1987 / Okunev, 2011)

If X is a compact zero-dimensional space, then Cp(X )× Cp(X ) is
a continuous image of Cp(X ).

Theorem (Marciszewski, 1987)

If X is a compact metrizable space, then Cp(X )× Cp(X ) is a
continuous image of Cp(X ).
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On the other hand Cp(X )× Cp(X ) is not always a linear
continuous image of Cp(X ). Even for a (compact) metrizable X .

Recall that a Cook continuum is a nontrivial metrizable continuum
M such that for every subcontinuum C ⊆ M, every continuous
mapping f : C → M is either the identity or is constant.

Theorem (K. & Marciszewski, 2015)

If X = M or X = B, then there is no linear continuous surjection
of Cp(X ) onto Cp(X )× Cp(X ).

Question (Leiderman)

Is it true that for a compact metric space X the space Cp(X × X )
is always a linear continuous image of Cp(X )?

Corollary (K. & Marciszewski)

No, If M is a Cook continuum, then there is no linear continuous
surjection of Cp(M) onto Cp(M ×M).
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Question (Kawamura & Leiderman, 2016)

Let P be a pseudoarc. Is it true that Cp(P × P) is a linear
continuous image of Cp(P)?

Remark

Cp(P) is linearly homeomorphic to Cp(P ⊕ P) = Cp(P)× Cp(P).

The reason why there is no linear continuous surjection of Cp(M)
onto Cp(M ×M) (even onto Cp(M ⊕M)) is rigidity of the Cook
continuum M.
The product of two pseudoarcs P × P is also rigid in some sense.

Theorem (Sobolewski, 2007)

Let F : P × P → P be a continuous. Suppose that
f = F � {x0} × P is 1-1, for some x0 ∈ P or g = F � P × {y0} is
1-1, for some y0 ∈ P. Then F � {x} × P = f , for all x ∈ P or
F � P × {y} = g , for all y ∈ P.
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Definition (Illanes)

A continuum X is pseudo-rigid if for any continuum C and
continuous map F : X × C → X we have
(∀c ∈ C ) F � X × {c} = F � X × {c0}, for some c0 ∈ C or
(∀x ∈ X ) F � {x} × C = F � {x0} × C , for some x0 ∈ X .

Question

Is P pseudo-rigid? What if in addition C = P?

Remark

If yes, then there is no linear continuous surjection
ϕ : Cp(P)→ Cp(P × P).

Question ( Lysko, 2007)

Let r : P × P → ∆ = {(x , y) ∈ P × P : x = y} be a continuous
retraction. Must r be of the form r(x , y) = (x , x) or
r(x , y) = (y , y) for all (x , y) ∈ P × P?
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r(x , y) = (y , y) for all (x , y) ∈ P × P?
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Free (abelian) topological groups

For a Tychonoff space X , a free (abelian) topological group on X
is a topological group F (X ) (A(X )) such that:

(i) X is a subspace of F (X ) (A(X )) and

(ii) For any (abelian) topological group G and any continuous
mapping f : X → G , there exists a unique continuous
homomorphism f̃ : F (X )→ G (f̃ : A(X )→ G ), such that
f̃ � X = f .

As a set, A(X ) consists of elements of the form
∑n

i=1 aixi , where
ai ∈ Z, xi ∈ X and n ∈ N.
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Free (abelian) topological groups

Theorem (Nickolas, 1976)

If X is infinite compact, then F (X × X ) embeds into F (X ) as a
subgroup.

Theorem (Leiderman, Morris & Pestov, 1997)

A(I × I ) embeds into A(I ) as a subgroup.

Theorem (K. & Leiderman, 2016)

If M is a Cook continuum, then A(M ×M) does not embed into
A(M) as a subgroup.
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Thank you!
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