
From Julia Set to Lamination
Pullback Laminations

From Lamination to Julia Set

Laminations of the Unit Disk and Cubic Julia
Sets

John C. Mayer

Department of Mathematics
University of Alabama at Birmingham

TOPOSYM 2016, Prague, CZ
July 25-29, 2016

1 / 76



From Julia Set to Lamination
Pullback Laminations

From Lamination to Julia Set

The Douady Rabbit z 7→ z2 − 0.12 + 0.78i

Julia sets by FractalStream
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The Rabbit Lamination

Hyperbolic lamination pictures courtesy of Clinton Curry and Logan Hoehn
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Rabbit Juilia Set and Rabbit Lamination

Family resemblance?
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Julia and Fatou Sets of Polynomials

Definitions:
Basin of attraction of infinity: B∞ := {z ∈ C | Pn(z)→∞}.
Filled Julia set: K (P) := C \ B∞.
Julia set: J(P) := boundary of B∞ = boundary of K (P).
Fatou set: F (P) := C∞ \ J(P).

Theorems (Facts):
J(P) is nonempty, compact, and perfect.
K (P) is full (does not separate C).
Attracting orbits are in Fatou set.
Repelling orbits are in Julia set.

Examples: P(z) = z2; P(z) = zd , d > 2; P(z) = z2 − 1, etc.
Assume: J(P) is connected.
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The Rabbit Juilia Set and Rabbit Triangle

External Rays Landing Angles
1/7

2/7

4/7
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The Rabbit Juilia Set and Rabbit Lamination

Down the rabbit hole!

1/7
2/7

4/7
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Böttkher’s Theorem

By D∞, “the disk at infinity,” we mean C∞ \ D, the complement
of the closed unit disk.

Theorem (Böttcher)
Let P be a polynomial of degree d. If the filled Julia set K is
connected, then there is a conformal isomorphism

φ : D∞ → B∞,

tangent to the identity at∞, that conjugates P to z → zd .
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D∞ D∞

B∞ B∞

-z 7→zd

?

φ

?

φ

-

P
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Basillica z 7→ z2 − 1
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Dragon z 7→ z2 − 0.28136 + 0.5326i
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Airplane z 7→ z2 − 1.75
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Airplane and B-17 Yankee Lady 1
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Cubic Rabbit z 7→ z3 + 0.545 + 0.539i
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Helicopter z 7→ z3 − 0.2634− 1.2594i
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Cubic Bug z 7→ z3 +
√

2
2 i z2
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Cubic Simple Type 1 IRT

z 7→ z3 + 3fz2 + g
f = −0.167026 + 0.0384441i and g = −0.0916222− 1.2734i
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Comparison

z 7→ z3 + c z 7→ z3 + 3fz2 + g

f = −0.167026 + 0.0384441i and g = −0.0916222− 1.2734i
c = −0.2634− 1.2594i
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Laminations of the Disk

Laminations were introduced by William Thurston as a way
of encoding connected polynomial Julia sets.

Definition

A lamination L is a collections of chords of D, which we call
leaves, with the property that any two leaves meet, if at all,
in a point of ∂D, and
such that L has the property that

L∗ := ∂D ∪ {∪L}

is a closed subset of D.
We allow degenerate leaves – points of ∂D.
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?Lamination to Julia Set?

The Beginning: Dynamics on the Circle

Consider special case P(z) = zd on the unit circle ∂D.
z = re2πt 7→ rde2π(dt).
Angle 2πt 7→ 2π(dt).
Measure angles in revolutions: then t 7→ dt (mod 1) on
∂D.
Points on ∂D are coordinatized by [0,1).
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σd Dynamics on the Circle

σ2 : t 7→ 2t (mod 1), angle-doubling.

29 / 76



From Julia Set to Lamination
Pullback Laminations

From Lamination to Julia Set

Induced map σd on Laminations

If ` ∈ L is a leaf, we write ` = ab, where a and b are the
endpoints of ` in ∂D.
We let σd(`) be the chord σd(a)σd(b).
If it happens that σd(a) = σd(b), then σd(`) is a point,
called a critical value of L, and we say ` is a critical leaf.
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Quadratic
Cubic
Identity Return Triangle

Sibling Invariant Laminations

Definition (Sibling Invariant Lamination)
A lamination L is said to be sibling d-invariant (or simply
invariant if no confusion will result) provided that

1 (Forward Invariant) For every ` ∈ L, σd(`) ∈ L.
2 (Backward Invariant) For every non-degenerate `′ ∈ L,

there is a leaf ` ∈ L such that σd(`) = `′.
3 (Sibling Invariant) For every `1 ∈ L with σd(`1) = `′, a

non-degenerate leaf, there is a full sibling collection
{`1, `2, . . . , `d} ⊂ L such that σd(`i) = `′.

Conditions (1), (2) and (3) allow generating a sibling invariant
lamination from a finite amount of initial data.
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Quadratic
Cubic
Identity Return Triangle

Full Sibling Collection (d = 6)

(Not to scale)
One of many possible sibling collections mapping to xy .
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Quadratic
Cubic
Identity Return Triangle

Definition
An orbit of polygons P0,P1 = σd(P0),P2 = σ(P1), . . . is said to
be forward invariant iff σd : Pi 7→ Pi+1 preserves the circular
order of the vertices of Pi .

Facts:
If a finite orbit of polygons P0,P1,P2, . . . ,Pn−1 = P0 is
forward invariant under σ2, then there always is a
compatible critical chord touching the orbit at a vertex.
If a finite orbit of polygons P0,P1,P2, . . . ,Pn−1 = P0 is
forward invariant under σ3, then there are always two
compatible critical chords touching the orbit at vertices.

(The facts can be generalized to a finite collection of finite orbits
of polygons.)

33 / 76



From Julia Set to Lamination
Pullback Laminations

From Lamination to Julia Set

Quadratic
Cubic
Identity Return Triangle

σ2 Binary Coordinates
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Quadratic
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Forward Invariant Triangle

001

010

100

σ2 : 001 7→ 010 7→ 100
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Quadratic
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Pullback Scheme

Definition (Pullback Scheme)
A pullback scheme for σd is a collection of d branches
τ1, τ2, . . . , τd of the inverse of σd whose ranges partition ∂D.

001

010

100

Data: Forward invariant lamination.
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Quadratic
Cubic
Identity Return Triangle

Pullback Scheme

Definition (Guiding Critical Chords)
The generating data of a pullback scheme are a forward
invariant periodic collection of leaves and a collection of d
interior disjoint guiding critical chords.

001

010

100

001

010

100

1010

Data: Forward invariant lamination. Guiding critical chord(s).
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Quadratic
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Branches τ1, τ2 of Inverse of σ2

001

010

100

1010

τ1 : ∂D→ [001,1010) τ2 : ∂D→ [1010,001)
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Pullback Scheme

001

010

100
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Pullback Scheme

001

010

100

001

010

100

1010

1100

0001

σ2 : 1010,0010 7→ 010
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Ambiguity
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Quadratic Lamination and Julia Set

Rabbit Lamination Rabbit Julia Set

Quotient space in plane =⇒ homeomorphic to rabbit Julia set.
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Quadratic
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Quadratic Lamination and Julia Set

Basillica Lamination Basillica Julia Set

01

10

01

10
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Quadratic
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Identity Return Leaf Orbit for σ2

σ2 : [011,100] 7→ [110,001] 7→ [101,010]

001
010

011

100

101 1100
110

0011
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Airplane Quadratic Julia Set

The corresponding point in the Julia set has two ray orbits
landing on it.
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σ3 ternary coordinates
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Cubic Lamination and Julia Set

Cubic Rabbit Triangle

001

010

100
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Quadratic
Cubic
Identity Return Triangle

Cubic Lamination and Julia Set

Cubic Rabbit Triangle Guiding all-critical triangle

001

010

100

001

010

100

1010

2010
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Cubic Lamination and Julia Set

Symmetric Siblings
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Cubic Lamination and Julia Set

Cubic Rabbit Lamination Cubic Rabbit Julia Set
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Quadratic
Cubic
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Cubic Pullback: Identity Return Leaf for σ3

An Identity Return Leaf for σ3.

120
212

122

201

221

012

[120,212] 7→ [201,122] 7→ [012,221]
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Identity Return Leaf for σ3

Orbit admits an all-critical triangle.

120
212

122

201

221

012

120
212

122

201

221

012

0201

2201
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Identity Return Leaf for σ3
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Cubic Lamination and Julia Set

Identity Return Leaf Lamination Helicopter Julia Set

z 7→ z3 − 0.2634− 1.2594i
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Quadratic
Cubic
Identity Return Triangle

Identity Return Polygons

Definition

A polygon P = P0 is said to be identity return iff its orbit

{P0,P1 = σd(P0),P2 = σd(P1),P3, . . . ,Pn = P0}

is periodic (of least period n) and has the properties
1 the polygons in the orbit are disjoint,
2 σn

d |P0 is the identity, and
3 Pi maps to Pi+1 (mod n) preserving circular order.

Each vertex is in a different orbit of period n.
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Cubic Pulback: Identity Return Triangle

Where can one place two critical chords to start the pullback
process?

012

002

221

020

120

212
122

201
200

Forward invariant lamination given
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Identity Return Triangle

Guiding critical chords

012

002

221

020

120

212
122

201
200

012

002

221

020

120

212
122

201

1200

200

2200
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Identity Return Triangle

012

002

221

020

120

212
122

201

1200

200

2200

Non-symmetric siblings
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Identity Return Triangle and Corresponding Julia Set

z 7→ z3 + 3fz2 + g
f = −0.167026 + 0.0384441i and g = −0.0916222− 1.2734i
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Identity Return Leaf versus Identity Return Triangle

Identity Return Leaf [120,212] Identity Return Triangle
with One Side [120,212]
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Comparison

74 / 76



From Julia Set to Lamination
Pullback Laminations

From Lamination to Julia Set

Sampling of Questions

1 Under what circumstances can multiple Identity Return
Polygon (IRP) orbits co-exist in an invariant lamination?

2 Given 3 points of a given period p ≥ 3, what are the criteria
for forming an Identity Return Triangle (IRT) for σ3?
[Brandon Barry – Dissertation]

3 In particular, can three given period p orbits form more
than one IRT? [No – CHMMO]

4 Given d ≥ 2 and a period p > 1 orbit under σd , how many
distinct identity return d-gon orbits can be formed?

5 What is the “simplest” 3-invariant lamination that contains a
given IRT? [Brandon Barry – Dissertation]

6 Given a “simplest” IRT lamination, is there a cubic Julia set
for which it is the lamination?
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