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e Given a linearly ordered set (X, <), with a, b, ¢ € X, we say
that b is between a and c if eithera< b<corc<b<a

e Natural to regard such a relation as a ternary predicate
[a, b, c], where (a, b, c) € X3,

e Birkhoff (1948) defined the betweenness relation [+, -, -], on a
partially ordered set (X, <) as an extension of that given
above.
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Beyond partial orders

e Vector space X over R with a, b € X: define [a, ¢, b] if cis a
convex combination of a and b.

e Metric space (X, d) (1928):
define [a, ¢, blp if d(a,c) + d(c, b) = d(a, b).

e Natural alliance between intervals [a, b] and ternary predicates
[a, ¢, b], in that we intend ¢ € [a, b] iff [a, c, b).
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Characteristics of betweenness

(R1) Reflexivity: [a, b, b].

(R2) Symmetry: [a,x,b] = [b,x, al.

(R3) Minimality: [a, b,a] =— b= a.

(R4) Transitivity: ([a,x,c] Ala,y,cl) Nlx,b,yl]) = la, b, cl.
Define a ternary relation to be an R-relation if it satisfies

conditions R1 - R4.

A very simple R-relation is 1 = ({1},{(1,1,1)}).

For any set X, the smallest R-relation on it is
X, ={la, b, bl,[b,b,a] | a, b € X},

while the largest is X1 := X3 < {[a, b, a] | a # b}.
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Bankston's insight: road systems

Definition
A road system on a nonempty set X is a family R of nonempty
subsets (roads) of X such that

(i) {a} € R for all a € X,
(ii) for all a,b € X, there is R € R such that a,b € R.

Each road system (X, R) gives rise to a betweenness relation
[, -, -] as follows:
[a, b, c]x holds if each road R containing a and ¢ also contains b.

Define [a,c]lg =N{R € R:a,c € R}.
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monotone functions: for objects (X, [-,-,Ix) and (Y, [, -, ]y) then
f: X — Y is a morphism provided [a, b, c]x = [f(a), f(b), f(c)]y.
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The inclusion functor Ry — T
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The inclusion functor R3 < T

(R3) Minimality: [a,b,al = a=0b

The left adjoint exists - and is more involved. Call it Ls.



The inclusion functor R4 — T

(R4) Transitivity: [a, b, c] N\ [a,d, c] A\ [b, x, d] = [a, x, c]

Has a left adjoint - call it Lg4.
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Adjoints as operators

Notice that the compositions L1 o L, and Ly o L are not the same.
The operator Ly (closure under symmetry) does not preserve R1
(reflexivity).

A less trivial example is given by L3 and Ly.

In fact, Ly o L3 o Ly o Ly defines the left adjoint to R — T.
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The subcategory A of antisymmetric R-relations

Antisymmetry: [a, b,c] A [a,c,b] =— b=c.

Question: does the inclusion functor A < R have a left adjoint?
Yes - demanding a change of underlying set; call it La.

L preserves R1, R2, and R3 in the presence of R1
... but not necessarily R4.

And L, may not preserve antisymmetry.

Theorem
The left adjoint is the direct limit of applying L4 after Ly w-many
times.
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Mar fhocal scoir

Given a lattice (X, <), define [a,b]; ={x:aAb<x<aV b}

Lemma

Let (X,[-,-,-]) be the R-relation generated from the lattice
intervals (roads) described above.

Then (X, <) is distributive if and only if (X, [-,+,-]) is

antisymmetric.



