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I. Full groups
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Full groups in the topological context

K denotes a Cantor space; Γ, ∆ are countable groups acting on K by
homeomorphisms and minimally: all orbits are dense.

Here we are particularly interested in the equivalence relation induced by
the action of Γ on K . We denote by [x ]Γ the Γ-orbit of x ∈ K .

Definition
The full group [Γ] is made up of all homeomorphisms g of K such that
for all x ∈ K there exists γ ∈ Γ satisfying γx = gx .

That is, for all x one has g([x ]Γ) = [x ]Γ.
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Full groups and orbit equivalence

Definition
The actions of Γ,∆ on K are orbit equivalent if there exists a
homeomorphism h of K such that

∀x ∈ K h([x ]Γ) = [h(x)]∆ .

That is, the orbit partitions of K induced by the actions of Γ and ∆ are
isomorphic.

Theorem (Giordano–Putnam–Skau; Medynets)
Assume Γ,∆ act minimally on K and ϕ : [Γ]→ [∆] is an isomorphism.
Then there exists g ∈ Homeo(K ) such that ϕ(T ) = gTg−1 for all
T ∈ [Γ].
In particular, an isomorphism between full groups must come from an
orbit equivalence (and conversely).
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Full groups in the measurable setting

The situation we just described has a measurable counterpart, where one
considers p.m.p actions on a standard probability space (X , µ), whose
automorphism group we denote by Aut(X , µ).

Definition
Given a countable p.m.p action of a countable group Γ on (X , µ), the full
group [Γ]µ is the subgroup of Aut(X , µ) made up of all g such that for
(almost) all x there exists γ satisfying g(x) = γx .

Theorem (Dye)
Given two countable groups ∆, Γ acting ergodically on (X , µ), and an
isomorphism ϕ : [Γ]µ → [∆]µ, there exists g ∈ Aut(X , µ) such that
ϕ(T ) = gTg−1 for all T ∈ [Γ]µ.
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Topologies on Aut(X , µ)

Aut(X , µ) is a Polish group when endowed with the topology τ induced
by the maps g 7→ µ(g(A)∆B).

One could also endow Aut(X , µ) with the uniform topology, coming from
the metric

du(g , h) = µ({x : g(x) 6= h(x)}) .

The topology induced by du is very much non separable.

[Γ]µ is not a closed subset of (Aut(X , µ), τ); when the action is ergodic
[Γ]µ is dense in Aut(X , µ).

At least, [Γ]µ is a Borel subset of Aut(X , µ) (Wei).
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Uniqueness of the Polish topology for measured full groups

[Γ]µ is a closed subgroup of (Aut(X , µ), du), and the induced topology
turns [Γ]µ into a Polish group.

Theorem (Kittrell–Tsankov)
Whenever the action of Γ on (X , µ) is ergodic, its full group has the
automatic continuity property: any homomorphism from [Γ]µ to a
separable group is continuous.

So the Polish topology of [Γ]µ is completely encoded in its algebraic
structure when the action is ergodic.
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Rise and Fall of a theorem

The group Homeo(K ) also has a natural Polish topology (given by the
sup-metric, or equivalently by viewing it as a subgroup of the group of
permutations of all clopen sets).

Obviously true Theorem
Whenever Γ is a countable group acting minimally on a Cantor space, the
full group [Γ] satisfies the automatic continuity property for its natural
Polish topology.

Minor concern
... What is this natural Polish topology, by the way?
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The search was futile

Theorem (Ibarlućıa–M.)
There is no second-countable, Baire, Hausdorff group topology on [Γ].

Theorem (Ibarlućıa–M.)
Even worse: any Baire, Hausdorff group topology on [Γ] must refine the
topology induced from the Polish topology on Homeo(K ); yet...

Whenever ϕ is a minimal homeomorphism of a Cantor space K , the full
group [ϕ] is a coanalytic non Borel subset of Homeo(K ).

The proof uses a result of Glasner and Weiss: whenever A,B are clopen
subsets such that µ(A) = µ(B) for any ϕ-invariant measure µ, there
exists g ∈ [ϕ] such that g(A) = B.
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II. Closures of full groups
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Characterization of the closure of [ϕ]

Theorem (Glasner–Weiss)
Assume ϕ is a minimal homeomorphism of K ; denote by Xϕ the set of all
probability measures on K preserved by ϕ. Then the closure of [ϕ] in
Homeo(K ) is

Gϕ = {g : ∀µ ∈ Xϕ g∗µ = µ} .

Theorem (essentially Giordano–Putnam–Skau)
If Gϕ and Gψ are isomorphic then ϕ and ψ are orbit equivalent.
(This follows from a GPS theorem stating that ϕ,ψ are orbit equivalent
as soon as Xϕ = Xψ)

We do not know whether Gϕ has the automatic continuity property (at
least its Polish group topology is unique).
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How little we know.

• Is Gϕ simple? What about [ϕ] ? (both are topologically simple for
the topology induced by Homeo(K ))

• Does Glasner–Weiss’ characterization of the closure of the full group
of a minimal homeomorphism remain true for minimal actions of
amenable groups?

• If Γ, ∆ are amenable and [Γ] ∼= [∆], are the actions of Γ and ∆
orbit-equivalent?

The last question appears completely out of reach in this generality.
Related to the last two:

• Given a simplex X of probability measures on K , when does there
exist a minimal homeomorphism ϕ of K such that X = Xϕ?
A result of Akin answers that question for X a singleton, and
unpublished work of Dahl extends that to the finite-dimensional case.
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III.Invariant measures.
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Necessary conditions

For X to coincide with the set of invariant measures of some minimal
homeomorphism,

• X must be nonempty, compact, and convex (even, a Choquet
simplex).

• All elements of X must be atomless and with full support.

• X must be good: whenever A,B are clopen and
∀µ ∈ X µ(A) < µ(B), ∃C ⊂ B clopen s.t. ∀µ ∈ X µ(C ) = µ(A).

To explain another necessary condition, let us recall the concept of a
Kakutani–Rokhlin partition.
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Kakutani–Rokhlin partitions: in words

Let ϕ be a minimal homeomorphism of K . Then for any nonempty
clopen B there exists n ≥ 1 such that

K =
n⋃

k=1

ϕk(B) .

Given x ∈ B, let kx = min{k ≥ 1: ϕk(x) ∈ B} and

Bk = {x ∈ B : kx = k} Bk,i = ϕi (Bk) (0 ≤ i ≤ k − 1) .

Then K =
⊔
Bk,i is the Kakutani–Rokhlin partition associated to B, ϕ.
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Kakutani–Rokhlin partitions: in pictures

Figure: A KR partition
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Kakutani–Rokhlin partitions: in pictures

Figure: The base appears in blue and the top in red
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Kakutani–Rokhlin partitions: in pictures

Figure: The action on atoms of the tower off the top is prescribed
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Approximate divisibility

Definition (M.–Ibarlućıa)
Let X be a set of probability measures on K . Then X is approximately
divisible if for all n, all ε > 0 and any clopen A there exists a clopen
B ⊆ A such that

∀µ ∈ K µ(A)− ε ≤ nµ(B) ≤ µ(A) .

Proposition (M.–Ibarlućıa)
If X = Xϕ for some minimal ϕ then X is approximately divisible.
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Simplices of invariant measures are approximately divisible

Figure: A KR partition with a small base B.
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Simplices of invariant measures are approximately divisible

Figure: 3 pieces of equal measures, plus a rest with measures < 2µ(B).
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A characterization

Theorem (Ibarlućıa–M.)
Let X be a subset of the space of probability measures on a Cantor space
K . There exists a minimal ϕ ∈ Homeo(K ) such that X = {µ : ϕ∗µ = µ}
iff

• X is nonempty, compact, and convex.

• All elements of X are atomless and with full support.

• X is good.

• X is approximately divisible.

When X is finite-dimensional the last assumption is redundant; unknown
in general. The result for X a singleton is due to Akin, and the f.d. case
(with a mild additional assumption) to Dahl.
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Beyond Z-actions (not independently checked!)

Observation (M.–Tsankov)
Whenever Γ is a f.g countable group acting freely and minimally on a
Cantor space, the simplex of all Γ-invariant measures is approximately
divisible.

Theorem (M.–Tsankov)
Let Γ be a f.g nilpotent group acting freely minimally on a Cantor space
K ; then there exists a minimal homeomorphism ϕ of K such that

{µ : ∀γ ∈ Γ γ∗µ = µ} = {µ : ϕ∗µ = µ} .

To obtain this result for nilpotent groups, we apply deep, hard work of
Schneider–Seward, itself building upon deep, hard work of Gao–Jackson
in the abelian case. It is a weak positive answer to the question of
whether any minimal action of a nilpotent group is orbit equivalent to a
minimal Z-action.
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Thank you for your attention!
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