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Introduction.

In this talk we will introduce a realcompactification for the class of
uniform spaces (X , µ) and we will call it the Samuel
realcompactification. Then we will study this
realcompactification in the frame of metric spaces (X , d).

First, we will compare the Samuel realcompactification of a metric
space (X , d) with another type of realcompactification that can be
defined for metric spaces and which is called Lipschitz
realcompactification.

Finally, we will see which metric spaces can be considered Samuel
realcompact.
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Realcompactifications of a Tychonoff space.

Definition. A realcompactification of a Tychonoff space X is a
realcompact space Y in which X is densely embedded.

compactification ⇒ realcompactification
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Order in the realcompactifications.

(R(X ), ≤ ) where R(X ) = { realcompactifications of X} and ≤ is
a partial order defined as follows:

α1X ≤ α2X if there is h : α2X → α1X continuous,

leaving X pointwise fixed

Definition. Two realcompactifications α1X and α2X are
equivalent whenever α1X ≤ α2X and α2X ≤ α1X .

∃ h : α2X → α1X an homeomorphism, leaving X pointwise fixed
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Generation of realcompactifications.

F ⊂ C (X ) separating points from closed sets

e : X → RF embedding

e(x) = (f (x))f ∈F

H(F) = e(X )
RF

• H(F) is the smallest realcompactification of X such that every
function f ∈ F can be continuously extended to it.

• Whenever F has an algebraic structure, for instance, if F is a
vector lattice, then

H(F) = {real unital vector lattice homomorphisms on F}
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Compactifications.

F∗ = F ∩ C ∗(X ) bounded functions of F

• H(F∗) is the smallest compactification and realcompactification
of X such that every function f ∈ F∗ can be continuously
extended to it.

X ⊂ H(F) ⊂ H(F∗)

Ana S. Meroño The Samuel realcompactification



Hewitt realcompactification and Stone-Čech
compactification.

X Tychonoff space

F = C (X ) real-valued continuous functions

H(C (X )) = υX is the Hewitt realcompactification of X

• υX is largest element in the ordered family (R(X ),≤).

• υX is the smallest realcompactification of X such that every
f ∈ C (X ) is continuously extended.
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Hewitt realcompactification and Stone-Čech
compactification.

F∗ = C ∗(X ) bounded real-valued continuous functions

H(C ∗(X )) = βX is the Stone-Čech compactification of X

• βX is the smallest compactification and realcompactification of
X such that every f ∈ C ∗(X ) is continuously extended.

X ⊂ υX ⊂ βX

Theorem. A Tychonoff space X is realcompact if and only if
X = υX .
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Samuel realcompactification and compactification.

(X , µ) uniform space

F = Uµ(X ) real-valued uniformly continuous functions

• H(Uµ(X )) is the smallest realcompactification of X such that
f ∈ Uµ(X ) is continuously extended.

F∗ = U∗µ(X ) bounded real-valued uniformly continuous functions

H(U∗µ(X )) = sµX is the Samuel compactification of (X , µ)

• sµX is the smallest compactification and realcompactification of
X such that every f ∈ U∗µ(X ) is continuously extended.
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Samuel realcompactification and compactification.

X ⊂ H(Uµ(X )) ⊂ sµX

We will call H(Uµ(X )) the Samuel realcompactification of
(X , µ) because it is associated to the family of all the real-valued
uniformly continuous functions as the Samuel compactification is
associated to the family of all the bounded real-valued uniformly
continuous functions.

Definition. A uniform space (X , µ) is Samuel realcompact if
X = H(Uµ(X )).

Samuel realcompact⇒realcompact
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Lipschitz realcompactification.

(X , d) metric space

F = Lipd(X ) real-valued Lipschitz functions

• H(Lipd(X )) is the smallest realcompactification of X such that
every f ∈ Lipd(X ) is continuously extended.

We will call H(Lipd(X )) the Lipschitz realcompactification of
(X , d)

F∗ = Lip∗d(X ) bounded real-valued Lipschitz functions

Theorem. H(Lip∗d(X )) is exactly the Samuel compactification sdX
of (X , d)

However in the unbounded case, H(Lipd(X )) and H(Ud(X )) are in
general different realcompactifications.
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Lipschitz realcompactification.

X ⊂ H(Lipd(X )) ⊂ sd(X )

Definition. A metric space (X , d) is Lipschitz realcompact if
X = H(Lipd(X )).

Lipschitz realcompact⇒ realcompact
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Main reference.

M. I. Garrido, A S. Meroño,
The Samuel realcompactification of a metric space
(submitted)
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Lipschitz realcompactification.

Theorem. Let (X , d) be a metric space x0 a fixed point in X and
Bd [x0, n] the closed ball of center x0 and radius n ∈ N. Then

H(Lipd(X )) =
⋃
n∈N

clsdXBd [x0, n] ⊂ sd(X )

Corollary. A metric space is Lipschitz realcompact if and only if
every closed bounded subset is compact.
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Relations between the realcompactifications.

X ⊂ υX ⊂ H(Ud(X )) ⊂ H(Lipd(X )) ⊂ sdX

Lipschitz realcompact⇒ Samuel realcompact

Observe that, uniformly equivalents metrics ρ
u' d define identical

Samuel realcompactifications and compactifications.

H(Ud(X )) =
∨{

H(Lipρ(X )) : ρ
u' d
}

=
⋂{

H(Lipρ(X )) : ρ
u' d
}
.
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Relations between the realcompactifications.

We write ρ
t' d for topologically equivalent metrics.

υX =
∨{

H(Uρ(X )) : ρ
t' d
}

=
⋂{

H(Uρ(X )) : ρ
t' d
}

υX =
∨{

H(Lipρ(X )) : ρ
t' d
}

=
⋂{

H(Lipρ(X )) : ρ
t' d
}
.
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Problems.

1 To characterize those metric spaces (X , d) for which there
exists a uniformly equivalent metric ρ such that H(Ud(X ))
and H(Lipρ(X )) are equivalent realcompactifications, that is,
H(Ud(X )) = H(Lipρ(X )).

2 To characterize those metric space (X , d) which are Samuel
realcompact, that is, X = H(Ud(X )).
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Bourbaki-bounded subsets.

Bd(x , ε) be the open ball of center x ∈ X and radius ε > 0

B2
d(x , ε) =

⋃
{Bd(y , ε) : y ∈ Bd(x , ε)} and

Bm
d (x , ε) =

⋃
{Bd(y , ε) : y ∈ Bm−1

d (x , ε)} whenever m ≥ 3.

Definition. A subset B of a metric space is Bourbaki-bounded if
for every ε > 0 there exist finitely many points x1, ..., xk ∈ X such
that for some m ∈ N,

B ⊂
k⋃

i=1

Bm
d (xi , ε).

Ana S. Meroño The Samuel realcompactification



Bourbaki-bounded subsets.

Theorem. (Atsuji) For a subset B of a metric space (X , d) the
following statements are equivalent:

1 B is Bourbaki-bounded;

2 f (B) ⊂ R is bounded for every f ∈ Ud(X ).
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Bourbaki-bounded subsets.

Examples.

1 Totally bounded subsets of metric spaces are
Bourbaki-bounded.

2 Bounded subsets of normed vector spaces are
Bourbaki-bounded.

3 Let
X = N× `2

where N brings the 0− 1 discrete metric and `2 is the classical
Hilbert spaces. Let d the product metric. Then, in (X , d),
bounded subset are not Bourbaki-bounded and
Bourbaki-bounded subsets are not totally bounded.
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Hejcman’s problem.

BBd(X ) = {Bourbaki-bounded subsets }
Bd(X ) = { bounded subsets }

J. Hejcman,
On simple recognizing of bounded sets
Comment. Math. Univ. Carolinae, 38 (1997), 149-156.

To determine those metric spaces (X , d) such that for some

uniformly equivalent ρ
u' d , BBd(X ) = Bρ(X ).

Example. Every normed vector space satisfies that
BBd(X ) = Bd(X ).
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Main result.

Proposition

For a metric space (X , d) the following statements are equivalent:

1 there exists a uniformly equivalent metric ρ
u' d such that

H(Ud(X )) is equivalent to H(Lipρ(X ));

2 H(Ud(X )) uniformly locally compact for the weak uniformity
on H(Ud(X )) as a uniform subspace of the product space
R Ud (X );

3 every uniform partition of X is countable and there exists
ε > 0 such that for every x ∈ X and every m ∈ N, Bm

d (x , ε) is
a Bourbaki-bounded subset;

4 there exists a uniformly equivalent metric ρ
u' d such that

BBd(X ) = Bρ(X ).
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Samuel realcompact metric spaces.

M. Hušek, A. Pulgaŕın,
Banach-Stone-Like theorems for lattices of uniformly continuous
functions
Quest. Math. 35 (2012) 417-430.

M. I. Garrido, A S. Meroño,
The Samuel realcompactification of a metric space
(submitted)
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Samuel realcompact metric spaces.

Proposition

A metric space (X , d) is Samuel realcompact, that is,
X = H(Ud(X )), if and only if every uniform partition of X has
non-measurable cardinal and X is Bourbaki-complete.
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Bourbaki-complete metric spaces.

M. I. Garrido, A. S. Meroño,
New types of completeness in metric spaces
Ann. Acad. Sci. Fenn. Math. 39 (2014), 733-758.

Definition. A metric space is Bourbaki-complete if and only if
every closed Bourbaki-bounded subset is compact.
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Examples.

Examples.

1 Every finite dimensional-Banach space is Samuel and Lipschitz
realcompact because every closed and bounded set is compact.

2 Every infinite dimensional Banach space is not Samuel
realcompact and not Lipschitz realcompact. In fact, unit
closed ball is Bourbaki-bounded but not compact.

3 Every uniformly discrete metric space of non-measurable
uncountable cardinality is Samuel realcompact but not
Lipschitz realcompact.

Ana S. Meroño The Samuel realcompactification



Bourbaki-complete metrizable spaces.

To be Samuel realcompact is a stronger topological property than
to be just realcompact. That is, not every metrizable realcompact
space X is metrizable by a metric d such that (X , d) is Samuel
realcompact.

A. Hohti, H. Junnila and A. S Meroño
On Strongly Čech-complete spaces
(manuscript)

Theorem. A metrizable space is metrizable by a Bourbaki-
complete metric if and only if it is homeomorphic to a closed
subspace of Rω × κω where κω is the Baire space of weight κ.

Ana S. Meroño The Samuel realcompactification



Samuel realcompact metrizable spaces.

Corollary. A metrizable space is metrizable by a metric d such
that (X , d) is Samuel realcompact if and only if it is
homeomorphic to a closed subspace of Rω × κω where κω is the
Baire space of weight κ and κ is a non-measurable cardinal.

Corollary. A connected metrizable space is metrizable by a metric
d such that (X , d) is Samuel realcompact if and only if it is
Čech-complete and separable.
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THANK YOU VERY MUCH!
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