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Motivation

We consider polynomials in one complex variable

P(z) = a0 + a1z + · · ·+ ad−2z
d−2 + zd

as topological dynamical systems on C.
Parameter space is Cd−1.

Any quadratic polynomial is affinely conjugate to

Pc(z) = z2 + c.



The basin of infinity and the Julia set

Definition
The basin of infinity

ΩP = {z ∈ C | P◦n(z)→∞ (n→∞)}

Definition
The Julia set J(P) = ∂ΩP is an invariant set. The dynamics of
P|J(P) is chaotic (not stable).



P0(z) = z2 + 0

A super-attracting fixed point



Denote by σd : S→ S the degree d covering map of the unit circle
defined by

σd(z) = zd

We will parameterize the unit circle S = R/Z and, if we use this
parameterization,

σd(t) = dt mod 1
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P(z) = z2 − 0.2

An attracting fixed point



P(z) = z2 − 0.4

An attracting fixed point



P(z) = z2 − 0.5

An attracting fixed point



P(z) = z2 − 0.73

An attracting fixed point



Parabolic bifurcation: P(z) = z2 − 0.75

A fixed point with multiplier −1



Basilica: P(z) = z2 − 1

A superattracting cycle of period 2



Rabbit



Douady rabbit: f (z) = z2 − 0.12.. + 0.74..i

A superattracting cycle of period 3



Airplane: f (z) = z2 − 1.75..

A superattracting cycle of period 3



Dendrite: f (z) = z2 + i

All cycles are repelling



The Mandelbrot set



The Mandelbrot set

M2 = {c ∈ C | the sequence

0 7→ c 7→ c2+c 7→ (c2+c)2+c 7→ . . .

is bounded}



The parameter plane of z2 + c
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Topological models for polynomials

Let P be a polynomial of degree d with connected Julia set
J(P) and basin of infinity ΩP .
There exists a conformal map φ : C \ D→ ΩP which conjugates
σd(z) = zd and P|ΩP

. If J(P) is locally connected, then φ extends
and there is a continuous map φ : S→ J(P) which semi-conjugates
σd |S and P|J(P).

Set x ∼P y iff φ(x) = φ(y);
then the equivalence relation ∼P on S is called the σd -invariant
lamination generated by P .
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Invariant laminations

Definition (Lamination)
An equivalence relation ∼ on S is called a lamination if:
1. Convex hulls of classes are disjoint,
2. the graph of ∼ is a closed subset of S× S,
3. each equivalence class of ∼ is finite.

Definition (Invariant Laminations)
A lamination ∼ is called (σd -) invariant if:
1. ∼ is forward invariant: for a ∼-class g, the set σd(g) is a
∼-class,

2. for any ∼-class g, the map σd : g→ σd(g) extends to S as an
orientation preserving covering map such that g is the full
preimage of σd(g) under this covering map.
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Topological polynomials

Let ∼ be a σd -invariant lamination. The quotient space J∼ = S/ ∼
is called a topological Julia set and the map f∼ : J∼ → J∼ induced
by σd |S a topological polynomial.

If J(P) is locally connected, then J(P) and J∼ are homeomorphic
and the maps P|J(P) and f∼P

are topologically conjugate.
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A complex polynomials of degree d , with locally connected Julia
set, corresponds to a topological poynomial which is defined by a
σd -invariant lamination ≈ on the unit circle S.

To study the parameter space of all polynomials of degree d , with
connected Julia sets, Thurston proposed studying the space of all
σd -invariant laminations.

He completed this approach for the space of quadratic polynomials
but the case of higher degree has remained elusive.
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Invariant geolaminations

Let ∼ be a σd -invariant lamination.

Convex hulls of ∼-classes are pairwise disjoint.
Consider all their edges; this is a closed family of chords LP .

Thurston studied the dynamics of families of chords similar to LP
without referring to polynomials. Such families of chords are called
σd -invariant geometric laminations (geolaminations).

To each geolamination L we associate the union of all its leaves
which is a continuum called the solid of L.
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Limits of laminations

Geolaminations provide a way of putting a natural topology on the
set of laminations (through the Hausdorff metric on the set solids
of geolaminations).

The set of invariant geolaminations is closed in the space of
subcontinua of the closed unit disk. Hence it is a compact metric
space.

Limit arguments can be used to associate geolaminations to
polynomials whose Julia set is not locally connected.
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Geolaminations

Definition (Thurston)
A closed family L of pairwise disjoint chords in D is called a
geolamination.

Elements of L are called leaves and the closures of components of
D \

⋃
L gaps. For a gap or leaf G we denote by σd(G ) the convex

hull of σd(G ∩ S).

S/L is the quotient space which identifies all points which are
connected by a leaf of L.
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σd -invariant geolaminations

Definition (σd -invariant geolamination)
A geolamination is σd -invariant provided:
1. all degenerate chords (i.e., points of S) are elements of L,
2. for each leaf ` ∈ L, σd(`) ∈ L,
3. for each ` ∈ L there exists `′ ∈ L such that σd(`′) = `,
4. for each ` ∈ L such that σd(`) is non-degenerate there exist d

disjoint leaves `1, . . . , `d ∈ L so that ` = `1 and for each i ,
σd(`) = σd(`i ).

The above definition is a slight modification of Thurston’s
definition. It can be shown that any geolamination which is
σd -invariant is also invariant in the sense of Thurston (i.e., these
geolaminations are also gap invariant).
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Basilica: f (z) = z2 − 1



Geolamination for z2 − 1



Rabbit: f (z) = z2 − 0.12.. + 0.74..i



Geolamination for the rabbit



Parameterization of laminations

Recall that we want to study the space of invariant laminations;
each lamination corresponds to a geolamination.

A geolamination consists of a collection of leaves.

Which leaves in such a geolamination determine the entire
geolamination?
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Parameterization of laminations

Definition (critical set)
A leaf ` = ab of a geolamination is critical if σ(a) = σ(b); a gap G
of a geolamination L is critical if either σd(G ) is a leaf or a point,
or the degree of σ|∂G is bigger than one.

Theorem
If two topological polynomials have the same critical sets, then the
corresponding laminations (and geolaminations) are equal.
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Hence to study the space of laminations we can study the space of
critical sets.

Every σd -invariant geolamination has at most d − 1 critical sets.

An ordered collection C of d − 1 critical chords so that no two
intersect in D and their union does not contain a SCC, is called a
full collection of critical chords.
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Full collections of critical chords

The space of full collections of critical chords is a:

circle if d = 2,

a 2-manifold if d = 3,

We can always insert a full collection of critical chords into a
geolamination.

Distinct full collections of critical chords may well correspond to the
same lamination and, hence, the same topological polynomial.
When is that the case?
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Linkage

If two polygons (e.g., quadrilaterals) have alternating vertices, we
call them strongly linked:



σd -invariant laminations

Suppose that Q is a quadrilateral with vertices a0 < a1 < a2 < a3

in S so that σd(a0) = σd(a2) and σd(a1) = σd(a3) and σd(Q) is a
leaf. Then diagonals of Q are critical chords called spikes and Q is
called a critical quadrilateral.

If all critical sets of a σd -invariant geolamination L are critical
quadrilaterals, then there are d − 1 of them. Choosing one spike in
each of them, we get a collection of d − 1 critical chords called a
complete sample of spikes. Call a no loop collection of d − 1 critical
chords a full collection. If L is a geolamination which corresponds
to a lamination and all its critical sets are critical quadrilaterals,
then a complete sample of spikes is a full collection.
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Definition (Quadratic criticality)
Let (L,QCP) be a geolamination with an ordered (d − 1)-tuple
QCP of critical quadrilaterals that are gaps or leaves of L such
that any complete sample of spikes is a full collection. Then QCP
is called a quadratically critical portrait (qc-portrait) for L and is
denoted by QCP while the pair (L,QCP) is called a geolamination
with a qc-portrait.



σd -invariant laminations

We assume that our geolaminations come with ordered qc-portraits.
We allow for degenerate quadrilaterals:

Definition
A (generalized) critical quadrilateral Q is the convex hull of ordered
collection of at most 4 points a0 ≤ a1 ≤ a2 ≤ a3 ≤ a0 in S so that
a0a2 and a1a3 are critical chords called spikes. Two critical
quadrilaterals are viewed as equal if their marked vertices coincide
up to a circular permutation of indices.
A collapsing quadrilateral is a critical quadrilateral, whose σd -image
is a leaf. A critical quadrilateral Q has two intersecting spikes and is
either a collapsing quadrilateral, a critical leaf, an all-critical
triangle, or an all-critical quadrilateral.
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Lemma
The family of all σd -invariant geolaminations with qc-portraits is
closed.

Definition
A critical cluster of L is by definition a convex subset of D, whose
boundary is a union of critical leaves.
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Definition (Linked geolaminations)
Let L1 and L2 be geolaminations with qc-portraits
QCP1 = (C i

1)d−1
i=1 and QCP2 = (C i

2)d−1
i=1 and a number

0 ≤ k ≤ d − 1 such that:

1. for every i with 1 ≤ i ≤ k , the sets C i
1 and C i

2 are either
strongly linked critical quadrilaterals or share a spike;

2. for each j > k the sets C j
1 and C j

2 are contained in a common
critical cluster of L1 and L2.

Then we say that L1 and L2 are linked geolaminations.
The critical sets C i

1 and C i
2, 1 ≤ i ≤ d − 1 are called associated

critical sets.



Generic topological polynomials

Definition (Generic topological polynomial)
A topological polynomial is generic if all critical sets of the
corresponding geolamination are finite.

If a topological polynomial is not generic then it either has a
periodic infinite critical set with a periodic point on its boundary or
an infinte non-periodic critical set which maps to a periodic infinte
critical set.
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Every σd invariant geolamination has at most d − 1 critical sets.

We can associate to every generic topological polynomial a
geolamination with a qc-portrait by inserting a full collection of
d − 1 generalized critical quadrilaterals into the critical sets.

Two generic topological polynomials are linked if the resulting
geolaminations with qc-portraits are linked.
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Theorem (Main Theorem)
If two generic topological polynomials have linked geolaminations,
then the corresponding laminations and hence the two topological
polynomials are the same.



Generic topological polynomials

If J∼ is the topological Julia set of a generic topological polynomial
then every gap G of the corresponding lamination is either finite or
a periodic Siegel gap U (so that the first return map on the
boundary is semi-conjugate to an irrational rotation of a circle), or
a non-periodic gap V so that its boundary maps monotonically to
the boundary of a periodic Siegel gap.

If all gaps are finite, then J∼ is a dendrite and we call the
topological polynomial dendritic.

A complex polynomial is dendritic if all periodic orbits are repelling.
Then the corresponding topological polynomial is also dendritic.
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Minor tags of generic topological polynomials

Let P be a generic quadratic topological polynomial.
Then the associated geolamination has a unique critical gap/leaf
GP . Then σ2(GP) is a gap, leaf or point in D which is called the
minor tag of P .



Minor tags of generic quadratic topological polynomials

The following theorem follows from classical results of Douady,
Hubbard and Thurston.

Theorem (Thurston)
If P1 and P2 are two distinct generic quadtratic polynomials, Then
their minor tags are disjoint and this collection of all minor tags is
upper-semicontinuous. Hence the closure of the collection of all
such minor tags is a lamination: the space of quadratic generic
topological polynomials is a lamination itself!

Corollary
There exists a continuous function from the space of dendritic
polynomialsMD2 to the quotient space which identifies each
minor tag to a point.
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Upper semicontinuity

Definition
We say that a family of sets Gα is upper-semicontinuous if
whenever xn ∈ Gαn converges to x∞ ∈ Gα, then lim supGαn ⊂ Gα.



Majors and minors for d = 2

Thurston defines for each σ2-invariant geolamination L as its major
a leaf ML ∈ L of maximal length and as its minor mL = σ2(ML).

For each dendritic polynomial Pc = z2 + c of degree 2 with
associated lamination ∼P and geolamination LP , mLP ⊂ σ2(Gc) is
an edge of σ2(Gc). (In fact, the shortest edge of σ2(Gc).)

Theorem (Thurston)
The collection of all minors of all σ2-invariant geolaminations is
itself a geolamination, called QML={mL} (for Quadratic Minor
Lamination). MoreoverMComb

2 = S/QML is a locally connected
continuum.
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Quadratic Minor Lamination

The quadratic minor lamination QML = {mL} contains all
minor tags of dendritic quadratic polynomials and their limits.



Quadratic Minor Lamination



The MLC conjecture

Conjecture
The boundary of the Mandelbrot setM2 is homeomorphic to the
quotient spaceMComb

2 = S/QML. In other words, the Mandelbrot
set is obtained from D by collapsing all leaves of QML.



Tagging cubic polynomials

Quadratic polynomials Pc = z2 + c are tagged by their critical
value. Generic Quadratic Laminations are tagged by minors tags
which are the image of the critical set. Quadratic geolaminations
are tagged by minors (images of major leaves in the boundary of
the critical set).

In case d = 2 one can think of a major as a leaf whose length is
closest to 1

2 . Similarly, when d = 3, one could find two appropriate
leaves whose length is closest to 1

3 and declare their images to be
the two minors of L.

However, unlike the case d = 2, minors do not uniquely determine
the majors and two distinct laminations may well have the same
pair of minors.
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Tagging cubic polynomials

Every cubic polynomial is affinely conjugate to a polynomial of the
form

P(z) = z3 + 3cz2 + v

which has critical points 0 and −2c . We consider P = (P,−2c , 0)
as a marked polynomial.

Note that v = P(0) is a critical value called the minor tag and that
P(c) = P(−2c). We call c = (−2c)∗ the co-critical point (of −2c).

Definition
The mixed tag of the marked polynomial (P,−2c , 0) is the pair

(c, v) = ((−2c)∗,P(0))
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Let (P, c ,w) be a marked dendritic polynomial. Then there exists a
lamination ∼, a quotient map π : S→ J∼ = S/ ∼ and a monotone
map m : J(P)→ J∼, where the topological Julia set J∼ is a
dendrite. Let L∼ denote the associated geolamination.

For each z ∈ J, let Gz denote the convex hull of π−1 ◦m(z). We
call (L∼,Gc ,Gw ) a marked geolamination. Note that Gc and Gw

are the critical sets of L∼.

If c 6= w , let c∗ denote the co-critical point of c .
If c = w , put c∗ = c .
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Tagging cubic dendritic polynomials

The mixed tag of (P, c ,w)

Tag(P, c ,w) = (Gc∗ × σ3(Gw )) ⊂ D× D.

Note that each tag is the product of two sets each of which is
either a point, a leaf or a gap. Hence we may think of these objects
as “leaves and gaps” in a higher dimensional lamination in D× D.
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Tagging generic cubic topological polynomials P

Every generic topological has either one or two finite critical sets
which are critical gap(s) or leaves(s) of the associated
geolamination L.

We consider marked critical sets so if their are two critical sets we
can call one Gc and the other Gw . Denote by Gc∗ (the co-critical
set) the gap/leaf/point of L, distinct from Gc , which has the same
image as Gc .
If L has only one critical set put Gc = Gc∗ = G = Gw .
As above,

Tag(P,Gc ,Gw ) = (Gc∗ × σ3(Gw )) ⊂ D× D.
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An application of our results

Theorem
Mixed tags of generic cubic topological polynomials are disjoint or
coincide. The closure of the collection of all mixed tags CML of
cubic generic topological polynomials is itself a (higher dimensional)
“lamination” in D× D.



Corollary
There exists a continuous function from the space of marked
dendritic cubic polynomialsMD3 to the quotient space
MDComb

3 = D× D/CML obtained by identifying individual tags to
points.



Tags of quadratic invariant laminations

Recall that the minor mL of a σ2-invariant geolamination L is the
image of a longest leaf M of L called a major.

Thurston defined QML = {mL} as the set of all minors.
He proved, in particular, that distinct minors are unlinked.



The central strip



The Central Strip Lemma

Lemma (Thurston)
Given two majors M, M ′, let C (M) be the open strip in D between
M and M ′ (the central strip); Thurston showed that no eventual
image of M can enter C (M).
This implies that:
1. σ2 cannot have wandering triangles,
2. vertices of a finite periodic gap belong to one cycle,
3. quadratic minors are unlinked.
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Sketch of Unlinkage Proof
Suppose m, n are linked minors.

m
n



Sketch of Unlinkage Proof
Then their majors’ central strips overlap.
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Sketch of Unlinkage Proof
Choose c a critical leaf in the intersection with preperiodic

endpoints. By CSL, no image of M,N can meet c .
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Sketch of Unlinkage Proof
Hence m, n are carried forward in order by σi2.
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Sketch of Unlinkage Proof
m, n are contained in a finite preperiodic gap of the geolamination

generated by c , contradicting transitivity.
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Higher degree case

The Central Strip Lemma fails for cubics;

consequences are:
1. the existence of wandering triangles for cubics,
2. the existence of periodic gaps with two cycles of vertices.



Accordions

Definition
For linked geolaminations L1, L2 with qc-portraits, an accordion is
the union A of a leaf ` of L1 with the leaves of L2 linked with `.
Accordions resemble gaps of one geolamination b/c they preserve
order under σd .



Accordions
If `1 ∈ L1, then each critical set of L2 has a spike unlinked with `1.
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Accordions
If `1 ∈ L1, then each critical set of L2 has a spike unlinked with `1.



Definition
Let L1 and L2 be geolaminations. Suppose that there are
geolaminations with qc-portraits (Lm1 ,QCP1), (Lm2 ,QCP2) such
that L1 ⊂ Lm1 , L2 ⊂ Lm2 . Then we say that L1 and L2 are linked if
(Lm1 ,QCP1) and (Lm2 ,QCP2) are linked.



Theorem
Suppose that La and Lb are linked laminations. Consider linked
chords `a, `x and the set B = CH(`a, `x). Suppose that for all n,
|σn(B) ∩ S| = 4 and B is not wandering. Then
(a) the set B is a stand-alone gap of some preperiod r ≥ 0;
(b) if X is the union of polygons in the forward orbit of σrd(B) and

Q is a component of X , then Q ∩ S is a finite set, the vertices
of σrd(B) are periodic of the same period and belong to two, or
three, or four distinct periodic orbits, and the first return map
on Q ∩ S can be identity only if Q = σrd(B) is a quadrilateral,

(c) the leaves `a, `x are (pre)periodic of the same eventual period
of endpoints.


