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In this talk we deal with several classes of nonmetrizable compact
spaces that correspond to well-known classes of Banach spaces
with many projections. In particular, we discuss the class of Val-
divia compact spaces and its subclass of Corson compact spaces.

Let I = [0,1]. Given a set A, the X-product of the product I is
the set
SI4 = {f e I | £71((0,1])| < w}-

Definition

» A set Y C X will be called a X-subset of X if there is an
embedding ¢ : X — I4, for some set A, such that

Y = 671 (6(X) NSIY).

» A compact is called Valdivia if it admits a dense X-subset.
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Kubis and Michalewski investigated a o-complete inverse system
whose bonding mappings are retractions and use it to obtain a
characterization of Valdivia compact spaces.
From now on, I' will denote an up-directed o-complete partially
ordered set.
Definition (Kubi$ and Michalewski, 2006)
An r-skeleton in a space X is a family {rs : s € I'} of retractions
on X satisfying:

(i) r5(X) is cosmic for each s € T.

(il

) s =rsor =1 0rs whenever s < t.
(iii) If s € I and s = sup,ey Sp T, then 7y = limy, o0 7, .

(iv) x = limgep 75(x) for every x € X.









An r-skeleton {rs : s € I'} on X is commutative if ryor, = ror;
for every s,t € I.



An r-skeleton {rs : s € I'} on X is commutative if ryor, = ror;
for every s,t € I.
Theorem (Kubi§ and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commuta-
tive r-skeleton.



An r-skeleton {rs : s € I'} on X is commutative if ryor, = ror;
for every s,t € I.

Theorem (Kubi§ and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commuta-
tive r-skeleton.

This characterization was used to prove that a compact space
of weight w; is Valdivia compact iff it is the limit of an inverse
sequence of metric compacta whose bonding maps are retractions.
As a corollary, it was proved that the class of Valdivia compacta
of weight w; is preserved both under retractions and under open
0-dimensional images.



An r-skeleton {rs : s € I'} on X is commutative if ryor, = ror;
for every s,t € I.

Theorem (Kubi§ and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commuta-
tive r-skeleton.

This characterization was used to prove that a compact space
of weight w; is Valdivia compact iff it is the limit of an inverse
sequence of metric compacta whose bonding maps are retractions.
As a corollary, it was proved that the class of Valdivia compacta
of weight w; is preserved both under retractions and under open
0-dimensional images.

Theorem (Chigogidze, 2008)

Let X be a compact group. Then X is a Valdivia compact iff X
18 homeomorphic to a product of metrizable compacta.
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An r-skeleton {rs:s € I'} on X is full if X = [J{rs(X):seT}.
Theorem (Cuth, 2014)

A compact space X is Corson if and only if admits a full r-
skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large
enough cardinal 0, there exists a closed and unbounded family
C C [H(0)]=¥ of elementary substructures (H(0),€) such that
for each M € C the quotient map A(C(X)NM) : K — REX)INM
s one-to-one on K N M.

It is natural to try to get a proof of the characterization of Val-
divia compact spaces by using Bandlow’s ideas.
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Lemma
Let X be a countably compact space X. If {rs: s € I'} is a family
of retractions in a X satisfying (i) - (iii) from the definition of
r-skeleton. If Y = | J{rs(X) : s € '}, then

» 1Y) <w.

» 1 = limyer rs(z) for each x €Y.

Lemma

Let X be a compact space and let F' be closed in X. Suppose that
{rs : s € T'} is a family of retractions from X into F such that
{rs Ir: s € I'} is an r-skeleton on F. If R = A{rg [p: s € '},
then R [p: F — R(X) is a homeomorphism.
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Lemma

Let X be compact and let Y be induced by a commutative -
skeleton. Then there exists a family {ra : A € P(Y)} of retrac-
tions on X such that, if X4 = ra(X) then:

(i) The family {rp : B € [Y]=*} is a commutative r-skeleton
on X4 and induces Y N X 4.

(i) AC Xa and d(Xa) <|A|.

(iii) rpora =rqorp =rp whenever B C A.

(iv) If A=Upecr Aa TEP(Y) then ry = limry,,.

(v) ra(Y) CY.

To prove that result we get an r-skeleton {ry : A € [Y]=¥}

satisfying (ii) and use the previous two Lemmas.
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_ ) Pa+1(ra41(2)) = Pat1(ra(x)) if a > 0;
o(@)(@) = {¢0(r0(x)) if o = 0.

Then ¢ is an embedding and Y = ¢~ }(ZRT).
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It happens that the proof also works for the case of Corson com-
pact spaces.
Corollary

A compact space X is Corson iff and only if admits a full r-
skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has
weight at most wy, then X can be embedded in a XR¥!.









Recall that a C,(X) denotes the space of all real-valued con-
tinuous functions over a space X in the pointwise convergence
topology.



Recall that a C,(X) denotes the space of all real-valued con-
tinuous functions over a space X in the pointwise convergence
topology.

Bandlow uses his result to obtain a characterization of the space
Cp(X) for a Corson compact space X. It is natural to ask if there
exists a similar characterization in the context of r-skeletons.



Recall that a C,(X) denotes the space of all real-valued con-
tinuous functions over a space X in the pointwise convergence
topology.

Bandlow uses his result to obtain a characterization of the space
Cp(X) for a Corson compact space X. It is natural to ask if there
exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.



Recall that a C,(X) denotes the space of all real-valued con-
tinuous functions over a space X in the pointwise convergence
topology.

Bandlow uses his result to obtain a characterization of the space
Cp(X) for a Corson compact space X. It is natural to ask if there
exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.
Definition

A map ¢ : T — [Y]=¥ is called w-monotone provided that:



Recall that a C,(X) denotes the space of all real-valued con-
tinuous functions over a space X in the pointwise convergence
topology.

Bandlow uses his result to obtain a characterization of the space
Cp(X) for a Corson compact space X. It is natural to ask if there
exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map ¢ : T — [Y]=¥ is called w-monotone provided that:
(a) if s,t € I" and s < ¢, then ¢(s) C ¢(t).



Recall that a C,(X) denotes the space of all real-valued con-
tinuous functions over a space X in the pointwise convergence
topology.

Bandlow uses his result to obtain a characterization of the space
Cp(X) for a Corson compact space X. It is natural to ask if there
exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map ¢ : T — [Y]=¥ is called w-monotone provided that:
(a) if s,t € I" and s < ¢, then ¢(s) C ¢(t).
(b) if s = sup,en sp T€ T, then ¢(s) = U, e @(5n)-
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It seems to be that the following notion is the right.

Definition
A g-skeleton on X is a family of pairs {(gs, Ds) : s € I'}, where
gs : X — X, is an R-quotient map and Dy € [X]=* for each
s € T', such that:

(i) The set gs(Ds) is dense in X.

(ii) If s,t € I' and s < t, then there exists a continuous onto

map pis : Xy — X, such that gs = py s 0 ;.

(iii) The assignment s — D; is w-monotone.

If in addition Cp(X) = User ¢4 (Cp(Xs)), then we say that the
g-skeleton is full.
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Theorem

If X has a full q-skeleton, then every countably compact subspace
of Cp(X) has a full r-skeleton. In particular, every compact sub-
space of Cp(X) is Corson.

Theorem

If X is monotonically w-stable, then X has a full g-skeleton. In
particular, whenever X is either Lindelof X or pseudocompact.

Theorem
If K is compact and X is a closed subspace of (L,)* x K, then

X has a full g-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that C,(X) is a continuous
image of a closed subspace of (L) x K. Then X is Corson.
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(i) if s,t € T and s < ¢, then Fy C F;, and
(iii) the assignment s — By is w-monotone.
In addition, if X =
full.

ser Fs, then we say that the c-skeleton is
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Corollary

A compact space X is Corson iff has a full c-skeleton.

Question

Let X be a countably compact space, is it true X has a full c-
skeleton iff X has a full r-skeleton.
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Consider the following game G(H, X) of length w played in a
space X, where H is a closed subset of X. There are two players,
O and Z.

» In the nth round, & chooses an open superset O,, of H,
and & chooses a point p, € O,,.

The player ¢ wins the game if p, — H. We say that H is a
W-set in X if € has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If
H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton.
Then X has a W-set diagonal.
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Definition (J. Bell, 2014)

The proximal game Proxp p(X) of length w played on a uniform
space X with two players &, & proceeds as follows:

» In the initial round 0, Z chooses an open symmetric en-
tourage Dy, followed by & choosing a point pg € X.

» In round n + 1, 2 chooses an open symmetric entourage
Dy 41 C Dy, followed by &2 choosing a point p,4+1 € X such
that ppy1 € Dplpn] :={y € X : (pn,y) € Dp}.

At the conclusion of the game, the player 2 wins if either
(W Dnlpn] : n € w} = 0 or {p, : n € N} converges, and &
wins otherwise.

A topological space is proximal iff it admits a compatible uni-
formity in which 2 has a winning strategy for Proxzp p(X).
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Theorem (Clontz and Gruenhague, 2015)

All proximal spaces are W -spaces.

Theorem

Let X be a countably compact which admits a full r-skeleton.
Then X is proximal.

For countably compact spaces we have:

r-skeleton — Proximal — W-space

Question

Are the above implications reversible?
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Definition

Given a space X, a subspace Y of X is monotonically re-
tractable in X if we can assign to each A € [Y]<% a retraction
r4:X — Y and a family N'(A) € [P(Y)]=¥ such that:

(i) ACra(X);

(ii) M(A) is a network of 74 [ Y; and

(iii) NV is w-monotone.
If in addition 74 o7 = rg o714 for each A, B € [Y]S%, we say
that Y is commutatively monotonically retractable in X.

Theorem

A compact space X is Valdivia if and only if it has a dense subset
Y which is monotonically retractable in X.






Thank you



