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© Motivation
© Setwise Betweenness via 2X and F,(X)

© Pointwise Betweenness via 2% and F,(X)



An intuitive view of betweenness arises naturally in any order-theoretic
structure; given a preorder < on a set X, with a, b, c € X such that
a < c < b, we say that " c is between a and b".
e Let (X, <) be a partially ordered set. Define for a < b,
[a,blo ={ce X:a<c<b}
If (X, <) is a tree with a common lower bound d of a, b.
0(37 b, d) = [d7 a]O U[d7 b]O-
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An intuitive view of betweenness arises naturally in any order-theoretic
structure; given a preorder < on a set X, with a, b, c € X such that
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@ Let X be a vector space over the real field R and let a,b € X.
The convex interval can be defined as follows: A vector c € X is
between a and b if ¢ € [a, b|cony = {at + (1 —t)b: t € [0,1]}.
So [a, b]cony is the set of all convex combinations of a and b.
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Road Systems and Pointwise Betweenness

Paul Bankston introduced the following definitions:

Definition

A road system is a pair (X, R), where X is a nonempty set and R is a
collection of nonempty subsets of X -called the roads- such that:

@ For each a € X, the singleton set {a} is a road.
@ Each two points a, b € X belong to at least one road.




Road Systems and Pointwise Betweenness

Paul Bankston introduced the following definitions:

Definition

A road system is a pair (X, R), where X is a nonempty set and R is a
collection of nonempty subsets of X -called the roads- such that:

@ For each a € X, the singleton set {a} is a road.
@ Each two points a, b € X belong to at least one road.

Definition
Let (X,R) be a road system and a, b,c € X. Then c € [a, b]r if every
road containing a and b also contain ¢. Then

celablrifce{ReR:ReR(ab)}

where R(a, b) denotes the set of roads that contain both a and b




Road Systems and Setwise Betweenness

There is a natural generalisation from pointwise betweenness to setwise
betweenness as follows:

Definition

Let (X, R) be a road system with a,b € X and () # C C X. We say that
C is between a and b if C(\R # () for all R € R(a, b)




Vietoris Hyperspace (2%)

Definition
Let X be a Ty space. The Vietoris topology 2X on CL(X), the collection of
all non-empty closed subsets of X, is the one generated by sets of the form

Ut ={Ae CL(X): AcC U}
U~ ={Ae CL(X): ANU # 0}

where U is an open subset of X.

A basis of the Vietoris topology consists of the collection of sets of the
form .,

(Ur, Up, ..., Up) ={A € CL(X) : AC | JUj and if i < n, A(\ U; # 0}

i=1
where Ui, Uy, ..., U, are non-empty open subsets of X.




n-fold Symmetric Product hyperspace F,(X)

Definition
Let X be a T; space, the hyperspace F,(X), called n-fold symmetric
product of X, is a subspace of the Vietoris space 2X defined as follows

Fo(X)={Ae X:|A < n}

A

Some properties of F,(X)
o FH(X)= X
o Fn(X) € Fnya(X)

e If X is a Hausdorff space then F,(X) is a closed subspace in the
Vietoris hyperspace.




Setwise Betweenness via 2% and F,(X)

Topological Space : X
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Setwise Betweenness via 2X and F,(X)

Notation

Let X be a topological space and a, b € X, the collection of sets that
satisfies a topological property P forms a road system.

The collection of sets that contain a and b and satisfy a topological
property P is denoted by P(a, b).

Definition
Let X be a T; space. Define the setwise interval with respect to a
property P and a hyperspace H as follows:

[a,b]37 = {C € H: CK # 0 for every K € P(a, b)}

| \
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Topological Space : X
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Definition
Let X be a topological space. Define the setwise interval with respect to
the Vietoris hyperspace 2% as follows:

[a, b]55C = {C € 2X : CN K # 0 for every K € CO(a, b)}
2X

where CO(a, b) the collection of all connected sets that contains a and b.



The Setwise Interval [a, b]3¢©

Example

Let X = C|J B be a subspace of the R? where C = [%, 1] and

B ={(0,0)} Us2; Co. Now if a € Cj and b € C; with i # j then for a

A € 2X to be lie in the interval [a, b]gfo it is necessary and sufficient that
(0,0) € A.

Oy




SCO

Some Properties of The Interval [a, b]5x

Let X be a T; space with a,b € X. Then
@ {a},{b} € [a,b]55°
@ [a,b]55° C [a, a5, [b, b]55C



Some Properties of The Interval [a, b]5¢¢

Let X be a topological space with a, b € X. Then
@ {a}, {b} € [a,b]355°
@ [a,b]55° C [a, a5, [b, b]55C

If f : X — Y be a homeomorphism then

f(la, bI3X) = [f(a), F(D)I5F°
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Topological Space : X
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Definition

Let X be a topological space. Define the setwise interval with respect to
the n-fold symmetric product hyperspace F,(X) as follows:

[a, bSCO {C e Fn(X): CNK #0 for every K € CO(a, b)}




The Setwise Interval [a, b];?(c)?)

Example

Let X be the comb space and

A= {[x,0]J[0.2,y] : where 0.2 <x < 0.6 and 0 <y <0.4}. Itis clear
that A € CO(a, b). Thus for C € F,(X) to lie between a and b, i.e. to be
sure that C € |[a, b]ﬁ(c)g it is enough for C to intersect A.

Comb space




Some Properties of The Interval [a, b]i(c)?)

continue ....

Some properties of the setwise interval [a, b] (¢

Let X be a topological space with a, b € X. Then
@ {a}, {b} € [a,b];(:)
@ [a, b]303 C [a. alo(), [b: BI2GR
© For n > 3, we have |[a, bf(c)?ﬂ[b cf(c)? #0

Q [a,b]760 € [a, I35 C - C [a, BI7GR




Some Properties of The Interval [a, b]ﬁ(c)?)

continue ....

Some properties of the setwise interval [a, b]fb?)

Let X be a topological space with a,b € X. Then
O {a},{b} € [a, HI55Y
@ [a, b330 < [a,al5(), [b, b1
© For n > 3, we have |[a, bf(c)?ﬂ[b Cf(c)g) #0

Q [a,bl35 € [a, 550 € - C [a, BI7GG

Proposition

Proposition: Let X be a topological space with a,b € X and C; € Fp(X)
for i=1,2,...such that GG C G, C .... If G € [a, b]sco then

G € [a, b]sg(g) for each i = 2,3,.




Some Properties of The Interval [a, b]g(c)?) continue ...

If f : X — Y be a homeomorphism then

f(la, BISES) = [F(a), F(B)ISEG




Pointwise Betweenness via 2% and F,(X)

Definition

Let X be a topological space with x € X. The hyperstar collection of x
with respect to a hyperspace H is defined by

st(x, H) ={CeH:xe C}
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Definition

Let X be a topological space with x € X. We define the hyperstar
collection of x with respect to a hyperspace H as follows:

st(x,H) ={C e H :xe C}

o st(x,2X)={Cec2X:xe C}
o st(x,Fn(X)) ={C e Fna(X) : xe€ C}



Pointwise Betweenness via 2% and F,(X)

Definition

Let X be a topological space with x € X. We define the hyperstar
collection of x with respect to a hyperspace H is defined by

st(x,H) ={C e H :xe C}

o st(x,2X)={Cec2X:xe C}

o st(x,Fn(X)) ={C e Fn(X) : xe€ C}
Some properties of st(x, Fp(X))

o st(x, F1(X)) = {{x}}

o st(x, Fn(X)) C st(x, Fntr1(X))



Pointwise Betweenness via 2% and F,(X)

Definition

Let X be a T; space. We define the hyperstar collection of a set C C X
as follows:

st(C, Fa(X)) = | st(c, Fa(X))
ceC
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Topological Space : X
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Pointwise Betweenness via 2X and F,(X)

Topological Space : X
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Pointwise Betweenness via 2% and F,(X)

Definition

Let X be a topological space with a, b, c € X. We say that c lies between
a and b with respect to a hyperspace # ( denoted by c € [a, b].” ) if
st(c,H) C [a, b]3] .




Pointwise Betweenness via 2% and F,(X)

Definition

Let X be a topological space with a, b,c € X. We say that c lies between
a and b with respect to a hyperspace H ( denoted by c € [a, b]L” ) if
st(c,H) C [a, b]3] .

Pointwise interval via 2%

Definition

Let X be a topological space. Define the pointwise interval with respect to
2X as follows:

[a, b]0XC = {c € X : st(c,2X) C [a, b]35°




Pointwise Betweenness via 2X and F,(X)




Pointwise Betweenness via 2% and F,(X)

Pointwise interval via F,(X)

Definition

Let X be a topological space. Define the pointwise interval with respect to
Fn(X) as follows:

EX b]f(CXO) = {c € X :st(c,Fn(X)) C [a, b]f(c)f))}




Pointwise Betweenness via 2% and F,(X)

Pointwise interval via F,(X)

Definition

Let X be a topological space. Define the pointwise interval with respect to
Fn(X) as follows:

[a, bPCO—{cEX st(c, Fn(X ))C[a,bsco}

Some properties
e {a, b} C|[a, b]PCO

o [2,51PSQ = [b, alFSG

o [a, b]f(cxo C [a, b]n+1(X
o Let f: X — Y be a homeomorphism map, then

f([a, blGay) = [f(a) F(BILES




A New Set Arose from Betweenness Setwise Interval
E b]sco
» Zln(X)

Definition

Let X be a topological space with a, b, c € X.

C —{CGX c € |a, b]f__cc))()}




A New Set Arose from Betweenness Setwise Interval
B b]S SCO

Definition
Let X be a topological space with a, b, c € X.

C —{CGX c€la, b]f—_“))()}

Let X be a topological space with a, b € X. Then

@ abe Y
Q If|C] X)y < nthen CI% € [a, b]3E0
° Cn(X c Cn+1(X)

(4} C"(X C C n(X) C (X)



A New Set Arose from Betweenness Setwise Interval
E b]sco
» Zln(X)

Definition

Let X be a topological space with a, b,c € X. We define the following set:

n(X
Cay(b):{ceX:ce [a,b]f(%g

Let X be a topological space with a, b € X. Then
@ abe
@ If |15V < nthen /YY) € [a, b3S
(X) +1(X)
@ Ccc,

n(X n(X) ~n(X)
Q C C Ca,a ’Cb,b

If f : X — Y be a homeomorphism between two topological spaces then

n(X)y _ ~n(Y)
f(Ca,b )_ Cf(a),f(b) |
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