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All topological spaces are assumed to be completely regular and
Hausdorff.



Definition

A topological space is said to be extremally disconnected if the
closure of any open set in this space is open (or, equivalently, the
closures of any two disjoint open sets are disjoint).
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Does there exist in ZFC a nondiscrete extremally disconnected
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Definition

A topological space is said to be extremally disconnected if the
closure of any open set in this space is open (or, equivalently, the
closures of any two disjoint open sets are disjoint).

Problem (Arhangelskii, 1967)

Does there exist in ZFC a nondiscrete extremally disconnected
topological group?

Malykhin: Any extremally disconnected topological group must
contain an open Boolean subgroup.

Thus, the existence of an extremally disconnected topological
group is equivalent to the existence of a Boolean extremally
disconnected topological group.
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2 vector spaces over Z2;

3 free (algebraically).
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Free Topological Groups

The very early 1940s: A. A. Markov introduced the free
topological group F (X ) and the free Abelian topological group
A(X ) on an arbitrary completely regular Hausdorff topological
space X and proved the existence and uniqueness of these groups.

The next decade: Graev, Nakayama, and Kakutani simplified
proofs, generalized the construction, and proved a number of
important theorems on free topological groups. Mal’tsev
introduced free topological universal systems.

1969–1970: Sidney Morris introduced the notion of a variety of
topological groups (this is a class of topological groups closed with
respect to taking topological subgroups, topological quotient
groups, and Cartesian products of groups with the product
topology) and studied free objects of these varieties.



The free topological group F (X ) on a space X :

1 X is topologically embedded in F (X ) and

2 for any continuous map f of X to a topological group G ,
there exists a continuous homomorphism f̂ : F (X ) → G for
which f = f̂ � X .



The free topological group F (X ) on a space X :

1 X is topologically embedded in F (X ) and

2 for any continuous map f of X to a topological group G ,
there exists a continuous homomorphism f̂ : F (X ) → G for
which f = f̂ � X .

As an abstract group, F (X ) is the free group on the set X . The
topology of F (X ) can be defined as the strongest group topology
inducing the initial topology on X .



The free topological group F (X ) on a space X :

1 X is topologically embedded in F (X ) and

2 for any continuous map f of X to a topological group G ,
there exists a continuous homomorphism f̂ : F (X ) → G for
which f = f̂ � X .

As an abstract group, F (X ) is the free group on the set X . The
topology of F (X ) can be defined as the strongest group topology
inducing the initial topology on X .
The free Abelian topological group A(X ) on X :
any continuous map f of X to an Abelian topological group can be
extended to a homomorphism.
The free Boolean topological group B(X ) on X :
any continuous map f of X to a Boolean topological group can be
extended to a homomorphism.



Whenever X algebraically generates a group G , we can define the
length of any g ∈ G with respect to X :

1 the length of the identity element is set to 0;

2 the length of any nonidentity g ∈ G with respect to X is the
least (positive) integer n such that g = xε11 xε22 . . . xεnn for some
xi ∈ X and εi = ±1, i = 1, 2, . . . , n.

We denote the set of elements of G of length at most k (with
respect to X ) by Gk for k ∈ ω; then G =

⋃
Gk . Thus, we use

Fk(X ), Ak(X ), and Bk(X ) to denote the sets of words of length at
most k in F (X ), A(X ), and B(X ), respectively.



Comparison of Free, Free Abelian, and Free Boolean
Topological Groups: Similarity

1 The sets Fn(X ), An(X ), and Bn(X ) are closed in the
respective groups.

2 For any family {Xα : α ∈ A} of spaces,

B
(⊕
α∈A

Xα

) ∼= σ�α∈AB(Xα).

3 The free Boolean topological group of a nondiscrete space is
never metrizable.

4 Let Y ⊂ X . The topological subgroup of B(X ) generated by
Y is B(Y ) if and only if each bounded continuous
pseudometric on Y can be extended to X .

5 If dimX = 0, then indB(X ) = 0.

6 Given a filter F on ω, B(ωF) has the inductive limit topology
if and only if F is a P-filter.



Comparison of Free, Free Abelian, and Free Boolean
Topological Groups: Difference

1 The free Abelian topological group of any connected space
has infinitely many connected components. The free Boolean
topological group of any connected space has two connected
components.

2 All finite powers X n are contained in F (X ) and A(X ) as
closed subspaces. Under CH, there exist an X such that X 2 is
not contained in B(X ) as a subspace.

3 There exist spaces X and Y for which B(X ) and B(Y ) are
toppologically isomorphic but A(X ) and A(Y ) (and F (X ) and
F (Y )) are not.



Specifics of Boolean Topological Groups

There is a fundamental difference in the very topological-algebraic
nature of free, free Abelian, and free Boolean groups:

1 Nontrivial free and free Abelian groups admit no compact
group topologies. On the other hand, for any infinite cardinal
κ, the direct sum

⊕
2κ Z2 of 2κ copies of Z2 (that is, the free

Boolean group of rank 2κ) is algebraically isomorphic to the
Cartesian product (Z2)

κ and, therefore, admits compact
group topologies (e.g., the product topology).

2 The free and free Abelian groups are never finite, while the
free Boolean group of any finite set is finite.
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Specifics of Boolean Topological Groups

There is a fundamental difference in the very topological-algebraic
nature of free, free Abelian, and free Boolean groups:

1 Nontrivial free and free Abelian groups admit no compact
group topologies. On the other hand, for any infinite cardinal
κ, the direct sum

⊕
2κ Z2 of 2κ copies of Z2 (that is, the free

Boolean group of rank 2κ) is algebraically isomorphic to the
Cartesian product (Z2)

κ and, therefore, admits compact
group topologies (e.g., the product topology).

2 The free and free Abelian groups are never finite, while the
free Boolean group of any finite set is finite.

3 Any countable Boolean topological group has a closed discrete
basis.

4 The study of extremally disconnected groups reduces to that
of Boolean extremally disconnected topological groups thanks
to Malykhin’s theorem (that any extremally disconnected
topological group contains an open Boolean subgroup).



Boolean Topological Groups Generated by Filters

Each free filter F on any set X is associated with XF = X ∪ {∗} (∗
is a point not belonging to X ); all points of X are isolated and the
neighborhoods of ∗ are {∗} ∪ A, A ∈ F.

B(XF) is topologically isomorphic to the Graev free topological
group BG (XF) in which the only nonisolated point of XF is the
zero of B(XF).
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Boolean Topological Groups Generated by Filters

Each free filter F on any set X is associated with XF = X ∪ {∗} (∗
is a point not belonging to X ); all points of X are isolated and the
neighborhoods of ∗ are {∗} ∪ A, A ∈ F.

B(XF) is topologically isomorphic to the Graev free topological
group BG (XF) in which the only nonisolated point of XF is the
zero of B(XF).

B(XF) is naturally identified with the group [X ]<ω of all finite
subsets of X under the operation � of symmetric difference
(A�B = (A \ B) ∪ (B \ A)).
The point ∗, which is the zero element of B(XF), is identified with
the empty set ∅, which belongs to [X ]<ω as the zero element.

Each x ∈ X is identified with {x} ∈ [X ]<ω.



We assume all filters F on ω to be free, i.e., to contain the Fréchet
filter (of all cofinite sets).
A filter F on ω is said to be a P-filter if, for any family of Ai ∈ F,
i ∈ ω, the filter F contains a pseudointersection of this family, i.e.,
a set A ⊂ ω such that |A \ Ai | < ω for all i ∈ ω. For ultrafilters,
this property is equivalent to being a P-point, or weakly selective,
ultrafilter.
A filter F on ω is said to be Ramsey if for any family of Ai ∈ F,
i ∈ ω, the filter F contains a diagonal of this family, i.e., a set
D ⊂ ω such that, whenever i , j ∈ D and i < j , we have j ∈ Ai .
Ultrafilters with this property are known as Ramsey, or selective,
ultrafilters.
We use the standard notation [ω]<ω for the set of all finite subsets
of ω and ω<ω for the set of all finite sequences of elements of ω.
Given s, t ∈ [ω]<ω, s � t means that s is an initial segment of t,
i.e., s ⊂ t and all elements of t \ s are greater than all elements of
s. For s ∈ [ω]<ω \ {∅} by max s we mean the greatest element of
s in the ordering of ω. We also set max∅ = −1.
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A notion of forcing is a partially ordered set (P,≤). Any topology
is a notion of forcing.

The Mathias forcing M(F) and (a modification of) the Laver
forcing L(F) relative to a filter F determine two natural topologies
on [ω]<ω: the Mathias topology τM generated by the base

{[s,A] : s ∈ [ω]<ω, A ∈ F},
where [s,A] = {t ∈ [ω]<ω : s � t, t \ s ⊂ A},

and the Laver topology τL generated by all sets U ⊂ [ω]<ω such
that

t ∈ U =⇒ {n > max t : t ∪ {n} ∈ U} ∈ F.



The Mathias topology τM = the topology of the free Boolean
linear topological group on ωF (linear groups are those with
topology generated by subgroups): a base of neighborhoods of
zero is formed by the sets [∅,A] with A ∈ F, that is, by all
subgroups generated by elements of F.
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continuous; groups with an invariant topology are said to be
semitopological. The convergence of F to zero means that τL
induces the initially given topology on ωF.)



The Mathias topology τM = the topology of the free Boolean
linear topological group on ωF (linear groups are those with
topology generated by subgroups): a base of neighborhoods of
zero is formed by the sets [∅,A] with A ∈ F, that is, by all
subgroups generated by elements of F.
The Laver topology τL is the maximal invariant topology on [ω]<ω

in which the filter F converges to zero. (An invariant topology is a
topology with respect to which the group operation is separately
continuous; groups with an invariant topology are said to be
semitopological. The convergence of F to zero means that τL
induces the initially given topology on ωF.)

The free group topology occupies an intermediate position between
τM and τL.



Theorem (Thümmel, 2007)

For any filter on ω, the following conditions are equivalent:

1 F is Ramsey;

2 τM = τfree = τindlim = τL;

3 τL is a group topology;

4 for any sequence of Ai ∈ F, i ∈ ω, the set
U = {∅} ∪⋃

i∈ω[i ,Ai ] is open in τfree.
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Theorem (Thümmel, 2007)

For any filter on ω, the following conditions are equivalent:

1 F is Ramsey;

2 τM = τfree = τindlim = τL;

3 τL is a group topology;

4 for any sequence of Ai ∈ F, i ∈ ω, the set
U = {∅} ∪⋃

i∈ω[i ,Ai ] is open in τfree.

Corollary (Thümmel, 2007)

Given a filter F on ω, the group B(ωF) is extremally disconnected
if and only if F is a Ramsey ultrafilter.

Corollary (S.)

The free Boolean group on a nondiscrete countable space X is
extremally disconnected if and only if X is an almost discrete space
associated with a Ramsey ultrafilter.



Countable Extremally Disconnected Groups

Definition

An ultrafilter U on ω is

• a P-point if, for any partition {An : n ∈ ω} of ω such that
An /∈ U for any n, there exists an A ∈ U such that
|A ∩ An| < ℵ0 for any n;

• Ramsey, or selective, if, for any partition {An : n ∈ ω} of ω
such that An /∈ U for any n, there exists an A ∈ U such that
|A ∩ An| � 1 for any n;
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Countable Extremally Disconnected Groups

Definition

An ultrafilter U on ω is

• a P-point if, for any partition {An : n ∈ ω} of ω such that
An /∈ U for any n, there exists an A ∈ U such that
|A ∩ An| < ℵ0 for any n;

• Ramsey, or selective, if, for any partition {An : n ∈ ω} of ω
such that An /∈ U for any n, there exists an A ∈ U such that
|A ∩ An| � 1 for any n;

• Q-point = Ramsey − P-point:
for any partition {An : n ∈ ω} of ω such that An is finite for
any n, there exists an A ∈ U such that |A∩An| � 1 for any n;

• rapid, if, for any partition {An : n ∈ ω} of ω such that An is
finite for any n, there exists an A ∈ U such that |A ∩ An| � n
for any n ⇐⇒ every function ω → ω is majorized by the
increasing enumeration of some element of U



CH =⇒ ∃ selective ultrafilters, P �= Q �= selective �= P

ZFC =⇒ ∃ an ultrafilter which is neither a P-point nor a Q-point

Shelah: There is a model in which �∃ P-point ultrafilters

Miller: In Laver’s model �∃ Q-points (but ∃ P-points)

Old problem: Does there exist a model in which there are no
P-points and no Q-points?



Theorem (Reznichenko + S., July 2016)

The existence of a countable nondiscrete extremally disconnected
group G implies the existence of either a rapid ultrafilter or a
P-point ultrafilter.



Theorem (Reznichenko + S., July 2016)

Let G be a topological group with identity element e for which the
filter of neighborhoods of e is not rapid. Suppose that S ⊂ G,
e ∈ S \ S, and {Wn ⊂ G : n ∈ ω} is a sequence of sets such that
Wn ∩WnW

−1
n = ∅ for all n ∈ ω. Then there exists a sequence

ξ = {xn ∈ SS−1 : n ∈ ω} such that e ∈ ξ and |ξ ∩Wn| < ω for all
n ∈ ω.

Theorem (Reznichenko + S., July 2016)

Suppose that G is a countable extremally disconnected topological
group with zero 0 for which the filter of neighborhoods of 0 is not
rapid and (Un)n is a decreasing sequence of clopen neighborhoods
of 0 for which Un+1 + Un+1 ⊂ Un and

⋂
n Un = {e}. Let

Cn = Un \ Un+1. Then

p = {{n : U ∩ Cn �= ∅} : U is a neighborhood of e}

is a P-point ultrafilter.
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Corollary (Reznichenko + S., July 2016)

If there are no rapid ultrafilters, then any countable topological
group contains a nonclosed discrete subset with only one limit
point.

If there exist no rapid ultrafilters and G is a countable Boolean
extremally disconnected group, then

1 G contains no open subgroups;

2 any linearly independent subset of G is closed and discrete;

3 the intersection of finitely many nondiscrete subgroups of G is
a nondiscrete subgroup;

4 if A,B ⊂ G and A ∩ B = ∅, then (A+ A) ∩ (B + B) = ∅.
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