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The pseudoarc and projective Fraissé limits
Direct Fraissé limits

Fix a relational language.
F a family of finite structures taken with embeddings.
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The pseudoarc and projective Fraissé limits
Direct Fraissé limits

Fix a relational language.
F a family of finite structures taken with embeddings.

F is a Fraissé family if it has Joint Embedding Property and
Amalgamation Property:

Fraissé: Countable Fraissé families have unique countable limit
structures.
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The pseudoarc and projective Fraissé limits
Two examples
1. The random graph
R = the family of finite graphs
R is a Fraissé family.

The random graph is the Fraissé limit of R.
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The pseudoarc and projective Fraissé limits

Two examples

1. The random graph
R = the family of finite graphs
R is a Fraissé family.

The random graph is the Fraissé limit of R.

2. The rational Urysohn space

U = the family of finite metric spaces with rational distances
U is a Fraissé family.

The Fraissé limit of U/ is the rational Urysohn space Uj.

The metric completion U of Uy is the Urysohn space, the unique
universal separable, complete metric space that is ultrahomogeneous with
respect to finite subspaces.
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The pseudoarc and projective Fraissé limits

Aim: By analogy with the above approach, develop a
logic/combinatorics-based point of view to:

— find canonical/combinatorial models for some topological spaces,
for example, the pseudoarc, the Menger compacta, the Brouwer curve
etc.;

— find a unified approach to topological homogeneity results for these
spaces.
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The pseudoarc and projective Fraissé limits

There will be three important objects:
the pseudoarc P = a certain compact, connected, second countable space

the pre-pseudoarc P = the Cantor set and a certain compact equivalence
relation R on it with P/R = P and with a certain relationship to a family
of finite structures

the augmented pre-pseudoarc Py = P with additional structure
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The pseudoarc
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S Theesdercandprojective Fraissélmis
K([0,1]?) = compact subsets of [0, 1] with the Vietoris topology
K([0,1]?) is compact
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The pseudoarc and projective Fraissé limits

K([0,1]?) = compact subsets of [0, 1]? with the Vietoris topology
K([0,1]?) is compact

C = all connected sets in KC([0, 1]?)

C is compact
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The pseudoarc and projective Fraissé limits

K([0,1]?) = compact subsets of [0, 1]? with the Vietoris topology
K([0,1]?) is compact

C = all connected sets in KC([0, 1]?)

C is compact

Bing: There exists a (unique up to homeomorphism) P € C such that
{P" € C: P' homeomorphic to P}

is a dense Gg in C.

Stawomir Solecki (University of lllinois) Fraissé limits and homogeneity for tuples July 2016

9 /40



The pseudoarc and projective Fraissé limits

K([0,1]?) = compact subsets of [0, 1]? with the Vietoris topology
K([0,1]?) is compact

C = all connected sets in KC([0, 1]?)

C is compact

Bing: There exists a (unique up to homeomorphism) P € C such that
{P" € C: P' homeomorphic to P}

is a dense Gg in C.

This P is called the pseudoarc.

Stawomir Solecki (University of lllinois) Fraissé limits and homogeneity for tuples July 2016 9 /40



The pseudoarc and projective Fraissé limits

K([0, 1]) = compact subsets of [0, 1] with the Vietoris topology
K([0,1]Y) is compact

C = all connected sets in K([0, 1]")

C is compact

Bing: There exists a (unique up to homeomorphism) P € C such that
{P" € C: P' homeomorphic to P}

is a dense Gg in C.

This P is called the pseudoarc.
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The pseudoarc and projective Fraissé limits

Continuum = compact and connected

The pseudoarc is a hereditarily indecomposable continuum, that is,
if C;, G; C P are continua with C; N Gy # 0, then C; € G or G, C .
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Projective Fraissé limits

«O> «F>r «=» «E» Q>



The pseudoarc and projective Fraissé limits

Fix a relational language.

F a family of finite structures taken with epimorphisms between
structures in F.
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The pseudoarc and projective Fraissé limits

Fix a relational language.
F a family of finite structures taken with epimorphisms between

structures in F.

F is called a projective Fraissé family if it has
Joint Epimorphism Property and Projective Amalgamation Property.
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M is a topological structure for F if
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The pseudoarc and projective Fraissé limits

M is a topological structure for F if

— M is a compact, 0-dimensional, second countable space,
— each relation symbol is interpreted as a closed relation on M,
— each continuous function M — X, with X finite, factors through an

epimorphism M — A for some A € F.
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Irwin=S.: There is a unique topological structure F for F such that
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The pseudoarc and projective Fraissé limits

Irwin—S.: There is a unique topological structure IF for F such that

— for each A € F there is an epimorphism F — A (projective
universality) and
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The pseudoarc and projective Fraissé limits

Irwin—S.: There is a unique topological structure IF for F such that
— for each A € F there is an epimorphism F — A (projective
universality) and

— for each A € F and epimorphisms f: F — A and g: F — A, there is
an automorphism ¢: F — F with f o ¢ = g (projective
ultrahomogeneity).
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Connection with the pseudoarc
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The pseudoarc and projective Fraissé limits

Fix a language consisting of a binary relation symbol R.

A finite R-structure = finite, linear, reflexive graphs with graph relation R
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The pseudoarc and projective Fraissé limits

Fix a language consisting of a binary relation symbol R.
A finite R-structure = finite, linear, reflexive graphs with graph relation R

Irwin—S.: The family of finite R-structures is a projective Fraissé family.
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Let P be the projective Fraissé limit of finite R-structures with relation R,
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The pseudoarc and projective Fraissé limits

Let P be the projective Fraissé limit of finite R-structures with relation R”.

R" is a compact equivalence relation on P, whose equivalence classes have
at most 2 elements each.
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The pseudoarc and projective Fraissé limits

Let P be the projective Fraissé limit of finite R-structures with relation R”.

R" is a compact equivalence relation on P, whose equivalence classes have
at most 2 elements each.

Irwin—S.: P/R" is the pseudoarc.
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We get projective homogeneity of the pseudoarc almost automatically.
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The pseudoarc and projective Fraissé limits

We get projective homogeneity of the pseudoarc almost automatically.

What about homogeneity?

Bing: The pseudoarc is homogeneous, that is, for any x,y € P, there
exists f € Homeo(P) such that f(x) = y.
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The pseudoarc and projective Fraissé limits

We get projective homogeneity of the pseudoarc almost automatically.

What about homogeneity?

Bing: The pseudoarc is homogeneous, that is, for any x,y € P, there
exists f € Homeo(P) such that f(x) = y.
Appropriate homogeneity for tuples holds as well.
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Partial homogeneity of the pre-pseudoarc
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Partial homogeneity of P



TyPes
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Partial homogeneity of the pre-pseudoarc

Types

A set K C P is called an R-substructure if it is compact, non-empty, and
for each finite R-structure A and each epi f: P — A, f[K] is an interval.
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For p € P, let

TpP = {K: K a substructure and p € R(K)}
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For p € P, let

and

TpP = {K: K a substructure and p € R(K)}

tpP = {K: K € Tp” and K = R(K)}.
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For p € P, let

TpP = {K: K a substructure and p € R(K)}
and
Note that

tpP = {K: K € Tp” and K = R(K)}.

tp? C Tp”.
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Let f: P — X be continuous, with X finite. So f is a projective tuple.
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Let

Let f: P — X be continuous, with X finite. So f is a projective tuple.

tpP(f) = {f[K]: K € tpP} and TpP(f) = {f[K]: K € Tp”}.
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Minimal types and independence
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Partial homogeneity of the pre-pseudoarc

Minimal types and independence

p € P has minimal types if for each continuous f: P — X with X finite

tp?(f) = Tp®(f).
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p, q € P are independent if p and g do not both belong to a proper
R-substructure of P.
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Partial homogeneity of the pre-pseudoarc

p,q € P are independent if p and g do not both belong to a proper
R-substructure of P.

There is a reformulation in terms of types.
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Partial homogeneity of the pre-pseudoarc

p,q € P are independent if p and g do not both belong to a proper
R-substructure of P.

There is a reformulation in terms of types.

A tuple of points is called independent if every two of its elements are.
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Main theorem for partial homogeneity of P

«O> «F>r «=» «E» Q>



Partial homogeneity of the pre-pseudoarc

Main theorem for partial homogeneity of P

Theorem (S.-Tsankov)

Let p1,...,pn € P be independent and p; have minimal types, for each i,
and
let q1,...,qn, € P be independent and q; have minimal types, for each i,
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Partial homogeneity of the pre-pseudoarc

Main theorem for partial homogeneity of P

Theorem (S.-Tsankov)

Let p1,...,pn € P be independent and p; have minimal types, for each i,
and
let q1,...,qn, € P be independent and q; have minimal types, for each i,

then there exists an automorphism ¢: P — P such that ¢(p;) = q;.
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Partial homogeneity of the pre-pseudoarc

Augmented R-structures as
a projective Fraissé family
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Chains
X finite set

U is a chain if U is a maximal family of subsets of X linearly ordered by
inclusion.
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Partial homogeneity of the pre-pseudoarc

Chains

X finite set

U is a chain if U is a maximal family of subsets of X linearly ordered by
inclusion.

If U is a chainon X and f: X — Y is a surjection, then
f(U)=A{f[l]: I € U}

is also a chain.
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Partial homogeneity of the pre-pseudoarc

Side-observation

p € P has minimal types if and only if, for each continuous f: P — X with
X finite, TpP(f) is a chain.
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o Pamilhomogeneiyoftheprepsendoare
New language
Fix n.

Add

Ui, ...
to the language consisting of R.
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Partial homogeneity of the pre-pseudoarc

New language
Fix n.

Add
U, ..., U,
to the language consisting of R.

A finite RU-structure is a finite structure A in the new language such
that

(i) (A, RA) is an R-structure;
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Partial homogeneity of the pre-pseudoarc

New language
Fix n.

Add
U,..., U,

to the language consisting of R.

A finite RU-structure is a finite structure A in the new language such
that

(i) (A, RA) is an R-structure;

(i) UA is a chain of intervals in A, for all 1 < < n.
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Partial homogeneity of the pre-pseudoarc

Let A and B be RU-structures. Then f: B — A is an RU-epimorphism if
it is an R-epimorphism and

f(UB) = U2 for each i.
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Projective Fraissé family
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Partial homogeneity of the pre-pseudoarc

Projective Fraissé family

Theorem (S.—Tsankov)

The family of finite RU-structures with RU-epimorphisms forms a
projective Fraissé family.
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Partial homogeneity of the pre-pseudoarc

Projective Fraissé family

Theorem (S.—Tsankov)

The family of finite RU-structures with RU-epimorphisms forms a
projective Fraissé family.

The proof uses a combinatorial chessboard theorem due to Steinhaus.
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Partial homogeneity of the pre-pseudoarc

Generic tuples and their characterization
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Projective Fraissé limit and generic tuples
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Partial homogeneity of the pre-pseudoarc

Projective Fraissé limit and generic tuples

Let
Pru

be the projective Fraissé limit of finite RU-structures.
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Partial homogeneity of the pre-pseudoarc

Projective Fraissé limit and generic tuples
Let
Pru
be the projective Fraissé limit of finite RU-structures.
Pry is equipped with

— an interpretation of R, which gives PP;

Stawomir Solecki (University of lllinois) Fraissé limits and homogeneity for tuples July 2016

35 / 40



Partial homogeneity of the pre-pseudoarc

Projective Fraissé limit and generic tuples
Let
Pru
be the projective Fraissé limit of finite RU-structures.
Pry is equipped with

— an interpretation of R, which gives PP;
— natural interpretations U,I-PR“ of U;, for which there exists a unique
tuple of points (pRY, ..., pRY) such that

P
{leU} c Ui RU
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Partial homogeneity of the pre-pseudoarc

Projective Fraissé limit and generic tuples
Let
Pru
be the projective Fraissé limit of finite RU-structures.
Pry is equipped with

— an interpretation of R, which gives PP;

— natural interpretations U,I-PR“ of U;, for which there exists a unique
tuple of points (pRY, ..., pRY) such that

P
{leU} c Ui RU

The tuple (pRY, ..., pRY) is called generic.
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Partial homogeneity of the pre-pseudoarc

Characterization of generic tuples

Theorem (S.—Tsankov)

Let p1,...,pn € P. The tuple (p1,...,pn) is generic if and only if it is
independent and each p; has minimal types, for 1 < i < n.
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Partial homogeneity of the pre-pseudoarc

Characterization of generic tuples

Theorem (S.—Tsankov)

Let p1,...,pn € P. The tuple (p1,...,pn) is generic if and only if it is
independent and each p; has minimal types, for 1 < i < n.

The proof uses the extension property and a combinatorial theorem on
representing R-epimorphisms as products of “simple” R-epimorphisms, due
to Young and Oversteegen—Tymchatyn.
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Partial homogeneity of the pre-pseudoarc

Characterization of generic tuples

Theorem (S.—Tsankov)

Let p1,...,pn € P. The tuple (p1,...,pn) is generic if and only if it is
independent and each p; has minimal types, for 1 < i < n.

The proof uses the extension property and a combinatorial theorem on
representing R-epimorphisms as products of “simple” R-epimorphisms, due
to Young and Oversteegen—Tymchatyn.

Side-observation
UPR — Tpo,
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Transfer theorem and homogeneity of the
pseudoarc
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Points xi,...,x, € P are in general position if no two of them belong to
a proper subcontinuum of P.
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Transfer theorem

Points x1,...,x, € P are in general position if no two of them belong to
a proper subcontinuum of P.

Theorem (S.—Tsankov)

Let y1,...,y, € P be in general position. There exist x1,...,x, € P/R¥
and a homeomorphism ¢: P/R® — P such that
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Transfer theorem

Points x1,...,x, € P are in general position if no two of them belong to
a proper subcontinuum of P.

Theorem (S.—Tsankov)
Let y1,...,y, € P be in general position. There exist x1,...,x, € P/R¥
and a homeomorphism ¢: P/R® — P such that

(i) x;i = pi/RY for some p; € P with (p1,...,pn) independent and each
pi having minimal types, for 1 < i < n;
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Transfer theorem

Points x1,...,x, € P are in general position if no two of them belong to
a proper subcontinuum of P.

Theorem (S.—Tsankov)
Let y1,...,y, € P be in general position. There exist x1,...,x, € P/R¥
and a homeomorphism ¢: P/R® — P such that

(i) x;i = pi/RY for some p; € P with (p1,...,pn) independent and each
pi having minimal types, for 1 < i < n;

(i) &(x;) =yi, for1 < i< n.
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Transfer theorem

Points x1,...,x, € P are in general position if no two of them belong to
a proper subcontinuum of P.

Theorem (S.—Tsankov)
Let y1,...,y, € P be in general position. There exist x1,...,x, € P/R¥
and a homeomorphism ¢: P/R® — P such that
(i) x;i = pi/RY for some p; € P with (p1,...,pn) independent and each
pi having minimal types, for 1 < i < n;
(i) &(x;) =yi, for1 < i< n.

The proof is purely combinatorial.
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general position.

Let y1,...,yn € P be in general position, and let z1,...,z, € P be in

«O>» «Fr «=>» «=)H» DA



Transfer theorem

Corollary (Bing)

Let y1,...,yn € P be in general position, and let z,...,z, € P be in
general position. There exists a homeomorphism of P mapping y; to z; for
each1l << n.
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