Pinning Down versus Density

Lajos Soukup

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

http://www.renyi.hu/~soukup

Twelfth Symposium on General Topology
and its Relations to Modern Analysis and Algebra



joint work with I. Juhasz, J. van Mill and Z. Szentmikléssy



Cardinal functions



Cardinal functions

X — F(X) € Card

X~ Y= F(X)=F(Y)



Cardinal functions

X — F(X) € Card

X~ Y= F(X)=F(Y)

o X



Cardinal functions

X — F(X) € Card

X~ Y= F(X)=F(Y)

o X
e w(X)=min{|B|: B is a base}



Cardinal functions

X — F(X) € Card

X~ Y= F(X)=F(Y)

o X
e w(X)=min{|B|: B is a base}
e d(X)=min{|D|: D c%nse X}



Basic inequalities

* |X]
e w(X) =min{|B|: B is a base}
e d(X) =min{|D| : D c%nse X}




Basic inequalities

X
w(X) = min{|B| : B is a base}
d(X) = min{|D| : D c9nse X}

d(X) < w(X) <2



Basic inequalities

X
w(X) = min{|B| : B is a base}
d(X) = min{|D| : D c9nse X}

d(X) < w(X) <2
(Posposil) X Hausdorff: [X| < 22" . Sharp: Aw



Basic inequalities

X
w(X) = min{|B| : B is a base}
d(X) = min{|D| : D c9nse X}

d(X) < w(X) < 21
(Posposil) X Hausdorff: [X| < 22" . Sharp: Aw
X regular: w(X) < 24X,



Basic inequalities

X
w(X) = min{|B| : B is a base}
d(X) = min{|D| : D c9nse X}

d(X) < w(X) < 21
(Posposil) X Hausdorff: [X| < 22" . Sharp: Aw
X regular: w(X) < 24X,
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e UisaNEAon Xiff U: X — 7xs.t. ac U(a) forallae X
e PC Xpinsdownanea Uiff PnU(a) # 0 forall a e X
e pd(X) = min{x : YU € NEA(X) 3A € [X]" (A pins down U)}

Theorem (l. Juhasz, L.S., Z. Szentmikl6ssy)
TFAE:

(1) 2® < k™ for each cardinal x,
(2) pd(X) =d(X) foreach T, space X,
(8) pd(X) = d(X) for each 0-dimensional T, space X.
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e dispersion character
A(X) =min{|U| : 0 # U c%°" X}.
e Xisneat: |[X| = A(X)

We prove:
If 2 > w, then there is a 0-dimensional space X with pd(X) = w and
IX] = A(X) = d(X) = w,.
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|D| < wp for some n

there is f € P such that DN X, C f(m) x w for m > n.
Then G(n, f,A,¢) N D = 0.

e Thus D is not dense.
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Some observations

If pd(X) < d(X), then 3Y %" X s.t. pd(Y) < d(Y) and A(Y) = |Y].

First pd-examples:

pd(X) = cf(|X]) < d(X) = A(X) = |X].

Questions

e Cand(X) be a regular cardinal?

e Can|X| be a regular cardinal?

Modified construction:

pd(X) = cf(1X]) <d(X) = cf(d(X))< A(X) = |X]
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Shelah’s Strong Hypothesis

p > cf(p)

S(u) = {a € [uNReg]®™ : supa = u}

U(a) = {D: Dis an ultrafilter on a, D N J*[a] = (}.
pp(1)= sup{cf(I[a/D) : a€ S(u),D € U(a))}

Shelah’s Strong Hypothesis:

pp(p) = ™ for all singular cardinal .
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An equiconsistency result

Theorem (l. Juhasz, L.S., Z. Szentmikl6ssy)
The following three statements are equiconsistent:

(i) There is a singular cardinal \ with pp(\) > \*, i.e. Shelah’s
Strong Hypothesis fails;

(i) there is a O-dimensional Hausdorff space X such that
|X| = A(X) is a regular cardinal and pd(X) < d(X);

(iii) there is a topological space X such that | X| = A(X) is a regular
cardinal and pd(X) < d(X).

No equivalence:
Con(failure of SSH + the limit cardinals are strong limit)
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Connected and locally connected spaces

Theorem (l. Juhasz,J. van Mill, L.S., Z. Szentmikléssy )
T:FA.E:

(1) 2% < k™ for each cardinal x,

(2) pd(X) =d(X) foreach T, space X,

(8) pd(X) = d(X) for each 0-dimensional T, space X.

(4) pd(X) = d(X) for all connected, locally connected regular spaces.
(5) pd(X) = d(X) for all Abelian topological groups.

What about connected Tychonoff spaces?

Theorem (JvMSSz)
It is consistent that

e there is a O-dimensional space X with pd(X) < d(X)

e pd(X) = d(X) for all connected Tychonoff spaces.
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A connected, locally connected Tychonoff pd-example

If X is a connected, Tychonoff space then | X| > 2¢.

Theorem (l. Juhasz,J. van Mill, L.S., Z. Szentmikléssy)
T:FA.E:

(1) There is a singular cardinal ;. > 2% which is not a strong limit
cardinal.

(2) There is a neat, connected, locally connected Tychonoff space X
with singular A(X) = | X| and pd(X) < d(X).

(3) There is a neat, pathwise connected, locally pathwise connected
Tychonoff Abelian topological group X with singular A(X) = |X]|
and pd(X) < d(X).
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T3 pd-example=> connected T3 pd-example

Assume that X is a T3 pd-example.

Ciesielski and Wojciechowsk: there is a separable connected T3
space P of size wy

Fix p € P. The underlying set of Z is
(X x (P\{p})) U {oc}.

Topology on X x (P \ {p}) in Z is the product topology.
A basic neighborhood of oo has the form

(X < (U\{p})) U {oc},
where U is any neighborhood of pin P.
Theorem: Z is connected T3, d(X) = d(Z) and pd(X) = pd(Z).



connected T3 pd-example=> connected, loc. connected T3 pd-example



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX

e Lis linked system if any two of its members meet.



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX
e Lis linked system if any two of its members meet.

®  A\X ={L:Lisamaximal linked family of

of closed subsets of X. }



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX
e Lis linked system if any two of its members meet.

®  A\X ={L:Lisamaximal linked family of

of closed subsets of X. }

e ForAc Xlet
AT ={MeXX:(IMec M)(McC A}



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX

L is linked system if any two of its members meet.
AX = {L: Lis a maximal linked family of
of closed subsets of X. }

For AcC X let
AT ={MeXX:(IMec M)(McC A}

closed subbase of AX:
{A" : Ais closed in X}



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX

L is linked system if any two of its members meet.
AX = {L: Lis a maximal linked family of
of closed subsets of X. }

For AcC X let
AT ={MeXX:(IMec M)(McC A}

closed subbase of AX:
{A" : Ais closed in X}

MX={LeMX IMe[X]<* (VLe L) LNM e L}



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX
e Lis linked system if any two of its members meet.

AX = {L: Lis a maximal linked family of
of closed subsets of X. }

e ForAc Xlet
AT ={MeXX:(IMec M)(McC A}

e closed subbase of A X:
{A" : Ais closed in X}
o M X={LeXX :IMe[X]~* (VLe L)LnMEe L}

e Verbeek: X is connected =— A\ X is connected and locally
connected



connected T3 pd-example=> connected, loc. connected T3 pd-example

e de Groot introduced the superextension of X denoted by AX
e Lis linked system if any two of its members meet.

AX = {L: Lis a maximal linked family of
of closed subsets of X. }

e ForAc Xlet
AT ={MeXX:(IMec M)(McC A}

e closed subbase of A X:
{A" : Ais closed in X}

o MX={LEM IMe[X]<* (VLe L) LNMe L}

e Verbeek: X is connected =— A\ X is connected and locally
connected

o JUMSSz: d(X) = d(\:X) and pd(X) = pd(A\rX)
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pd-example—> (Abelian) group pd-example
If X is a T3 5-space, then F(X) and A(X) denote the free topological
group and the free abelian topological group on X.
F(X) is a topological group containing (a homeomorphic copy of) X
such that
1. X generates F(X) algebraically,

2. every continuous function f : X — H, where H is any topological
group, can be extended to a continuous homomorphism
f:F(X)— H.

Similarly for A(X).
The existence of these groups was proved by Markov.

Theorem (JvMSSz)
Let X be a T3 5-space. Then

d(X) = d(F(X)) = d(A(X)).
If X is neat, then so are A(X) and F(X), and
pd(X) = pd(A(X)) = pd(F(X)).
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group pd-example—> (loc) pathwise-connected group pd-example
e Hartman Mycielski construction
e Let (G, e) be a Tychonoff topological group.
G*={fe LYG-
for some sequence 0=ay < ay <---< a, =1
f is constant on [ag, ax+1) forevery k =0,...,n—1 }

Define x on G*® by (f x g9)(x) = f(x) - g(x) forall f,g € G* and
x €1[0,1).
(G*, =, e*) is agroup, where e*(r) = eforeach r € [0,1).

G embeds into G* via x — x*, where x*(r) = x for every
re[o,1).

Foree Vergande > 0, put
O(V,e)={fe G : \{re[0,1):f(r) ¢ V})} <&}

The O(V,¢) are the neighborhoods of the element e*® of G* that
generate the topology.
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Properties of Hartman Mycielski extension G°®

Theorem

G* is a topological group and is pathwise connected and locally
pathwise connected.

d(G*) < d(G).

Theorem (JVMSSz)

e d(G)=d(G").
e IfGis neat, and |G| > 2%, then G* is neat and pd(G*) = pd(G).



Positive results



Positive results

Theorem
If X is compact then pd(X) = d(X).



Positive results

Theorem
If X is compact then pd(X) = d(X).

Question (JSSz)
o What about (regular) Lindeléf spaces?

e What about (regular) countably compact spaces?



Positive results
Theorem
If X is compact then pd(X) = d(X).
Question (JSSz)
e What about (regular) Lindeldf spaces?
e What about (regular) countably compact spaces?

Theorem (Juhasz,van Mill, S, Szentmikldssy)

It is consistent that pd(X) < d(X) for some hereditarily Lindeldf
regular space X.



Positive results
Theorem
If X is compact then pd(X) = d(X).
Question (JSSz)
e What about (regular) Lindeldf spaces?
e What about (regular) countably compact spaces?

Theorem (Juhasz,van Mill, S, Szentmikldssy)

It is consistent that pd(X) < d(X) for some hereditarily Lindeldf
regular space X.

Theorem (Juh&sz, Shelah)

For any singular cardinal . it is consistent that there is a hereditarily
Lindeldf regular space X such that d(X) = p.



Positive results
Theorem
If X is compact then pd(X) = d(X).
Question (JSSz)
e What about (regular) Lindeldf spaces?
e What about (regular) countably compact spaces?

Theorem (Juhasz,van Mill, S, Szentmikldssy)

It is consistent that pd(X) < d(X) for some hereditarily Lindeldf
regular space X.

Theorem (Juh&sz, Shelah)

For any singular cardinal . it is consistent that there is a hereditarily
Lindeldf regular space X such that d(X) = p.

Fact: pd(X) = cf(p).



Positive results
Theorem
If X is compact then pd(X) = d(X).
Question (JSSz)
e What about (regular) Lindeldf spaces?
e What about (regular) countably compact spaces?

Theorem (Juhasz,van Mill, S, Szentmikldssy)

It is consistent that pd(X) < d(X) for some hereditarily Lindeldf
regular space X.

Theorem (Juh&sz, Shelah)

For any singular cardinal . it is consistent that there is a hereditarily
Lindeldf regular space X such that d(X) = p.

Fact: pd(X) = cf(p).
Problem

Is it consistent that there is a hereditarily Lindeléf regular space X
such that d(X) = 2% > cf(2+)?
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Estimate d(X) using pd(X)

Theorem (JSSz)
d(X) < 20900),

Sharp?
Theorem (JSSz)
d(X) < 2P4X),
Sharp?

Yes.
It is consistent that 2P4(X) is as large as you wish and d(X)* = 2pPd(X),
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X| < 22 for T, spaces.
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If|X| = A(X), then
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Inequalities

e Pospisil: |X| < 22™ for T, spaces

e w(x) < 290 for T spaces

Theorem (JSSz)
X| < 22 for T, spaces.

Theorem (JSSz)
If|X| = A(X), then

e either pd(X) = d(X) and |X| < 22"
e pd(X) < d(X) and |X| < 2rdX)

Problem
Does w(x) < 2P hold for regular spaces?
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