Productively (and non-productively) Menger spaces

Piotr Szewczak

Cardinal Stefan Wyszyński University, Poland, and Bar-Ilan University, Israel

joint work with Boaz Tsaban

Toposym 2016

Supported by National Science Center Poland UMO-2014/12/T/ST1/00627

Menger's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

 $Menger \Rightarrow Lindel\"{o}f$

Menger's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

 σ -compact \Rightarrow Menger \Rightarrow Lindelöf

Menger's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subset \mathcal{O}_1, \mathcal{F}_2 \subset \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

$$\sigma$$
-compact \Rightarrow Menger \Rightarrow Lindelöf

Aurichi: Every Menger space is D

Menger's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

$$\sigma$$
-compact \Rightarrow Menger \Rightarrow Lindelöf

Aurichi: Every Menger space is D

Chodunsky, Repovš, Zdomskyy: Mengers property characterizes filters whose Mathias forcing notion does not add dominating functions

Menger's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \ldots$ covers X

$$\sigma$$
-compact \Rightarrow Menger \Rightarrow Lindelöf

Aurichi: Every Menger space is D

Chodunsky, Repovš, Zdomskyy: Mengers property characterizes filters whose Mathias forcing notion does not add dominating functions

Tsaban: The most general class for which a general form of Hindmans Finite Sums Theorem holds

```
[\mathbb{N}]^{\infty}: infinite subsets of \mathbb{N} [\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}: increasing enumeration, [\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}
```

 $[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

• $x \le y$ if $x(n) \le y(n)$ for all n

 $[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \le y$ if $x(n) \le y(n)$ for all n
- $x \leq^* d$ if $x(n) \leq y(n)$ for almost all n

 $[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \le y$ if $x(n) \le y(n)$ for all n
- $x \leq^* d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^* y$

$$[\mathbb{N}]^{\infty}$$
: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \le y$ if $x(n) \le y(n)$ for all n
- $x \leq^* d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^* y$
- \mathfrak{d} : minimal cardinality of a dominating set

$$[\mathbb{N}]^{\infty}$$
: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \le y$ if $x(n) \le y(n)$ for all n
- $x \leq^* d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^* y$
- 0: minimal cardinality of a dominating set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional X is Menger \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is **nondominating**

$$[\mathbb{N}]^{\infty}$$
: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \le y$ if $x(n) \le y(n)$ for all n
- $x \le^* d$ if $x(n) \le y(n)$ for almost all n
- Y is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^* y$
- \mathfrak{d} : minimal cardinality of a dominating set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional X is Menger \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is **nondominating**

• A Lindelöf X with $|X| < \mathfrak{d}$ is Menger

$$[\mathbb{N}]^{\infty}$$
: infinite subsets of \mathbb{N} $[\mathbb{N}]^{\infty} \ni x = \{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \le y$ if $x(n) \le y(n)$ for all n
- $x \le^* d$ if $x(n) \le y(n)$ for almost all n
- Y is dominating if $\forall_{x \in [\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^* y$
- ullet 0: minimal cardinality of a dominating set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional X is Menger \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is **nondominating**

- A Lindelöf X with $|X| < \mathfrak{d}$ is Menger
- A dominating $X \subseteq [\mathbb{N}]^{\infty}$ is not Menger

Todorčević (ZFC):

There is a Menger set whose square is not Menger

Todorčević (ZFC):

There is a Menger set whose square is not Menger

Sets of reals

Todorčević (ZFC):

There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):

There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Todorčević (ZFC):

There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):

There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Scheepers, Tsaban ($cov(\mathcal{M}) = cof(\mathcal{M})$):

There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Todorčević (ZFC):

There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):

There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Scheepers, Tsaban $(cov(\mathcal{M}) = cof(\mathcal{M}))$:

There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Problem (sets of reals)

Find the minimal hypotheses that Menger's property is not productive

Todorčević (ZFC):

There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):

There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Scheepers, Tsaban $(cov(\mathcal{M}) = cof(\mathcal{M}))$:

There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Problem (sets of reals)

Find the minimal hypotheses that Menger's property is not productive

$$\mathrm{P}(\mathbb{N}) pprox \{0,1\}^\omega$$
: the Cantor space

$$P(\mathbb{N}) = [\mathbb{N}]^{\infty} \cup Fin$$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\ a\in A: a\leq \mathbf{c}\ \}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\ a\in A: a\leq \mathbf{c}\ \}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

$$A \subseteq [\mathbb{N}]^{\infty}$$
 is \mathfrak{d} -unbounded $\Rightarrow A \cup \operatorname{Fin}$ is Menger

• Fin $\subseteq \bigcup_n O_n$

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

$$A \subseteq [\mathbb{N}]^{\infty}$$
 is \mathfrak{d} -unbounded $\Rightarrow A \cup \operatorname{Fin}$ is Menger

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in [\mathbb{N}]^{\infty}} P(\mathbb{N}) \setminus \bigcup_n O_n \leq \mathbf{c}$

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in [\mathbb{N}]^{\infty}} P(\mathbb{N}) \setminus \bigcup_n O_n \leq \mathbf{c}$

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in [\mathbb{N}]^{\infty}} P(\mathbb{N}) \setminus \bigcup_n O_n \leq \mathbf{c}$
- $|A \setminus \bigcup_n O_n| < \mathfrak{d}$

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in [\mathbb{N}]^{\infty}} P(\mathbb{N}) \setminus \bigcup_n O_n \leq \mathbf{c}$
- $|A \setminus \bigcup_n O_n| < \mathfrak{d} \Rightarrow A \setminus \bigcup_n O_n$ is Menger

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in [\mathbb{N}]^{\infty}} P(\mathbb{N}) \setminus \bigcup_n O_n \leq \mathbf{c}$
- $|A \setminus \bigcup_n O_n| < \mathfrak{d} \Rightarrow A \setminus \bigcup_n O_n$ is Menger

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in [\mathbb{N}]^{\infty}} P(\mathbb{N}) \setminus \bigcup_n O_n \leq \mathbf{c}$
- $|A \setminus \bigcup_n O_n| < \mathfrak{d} \Rightarrow A \setminus \bigcup_n O_n$ is Menger

$$A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$$

$$A \subseteq [\mathbb{N}]^{\infty}$$
 is \mathfrak{d} -unbounded $\Rightarrow A \cup \operatorname{Fin}$ is Menger

- Fin $\subseteq \bigcup_n O_n$
- $P(\mathbb{N}) \setminus \bigcup_n O_n \subseteq [\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in [\mathbb{N}]^{\infty}} P(\mathbb{N}) \setminus \bigcup_n O_n \leq \mathbf{c}$
- $|A \setminus \bigcup_n O_n| < \mathfrak{d} \Rightarrow A \setminus \bigcup_n O_n$ is Menger
- A ∪ Fin is Menger

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X \subseteq [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\ a\in A: a\leq \mathbf{c}\ \}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X\subseteq [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y\subseteq \mathrm{P}(\mathbb{N})$, $X\times Y$ is not Menger

Corollary

 $\operatorname{cf}(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists \text{ Menger } X, Y \subseteq \operatorname{P}(\mathbb{N}), \ X \times Y \text{ is not Menger}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X\subseteq [\mathbb{N}]^\infty$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y\subseteq \mathrm{P}(\mathbb{N})$, $X\times Y$ is not Menger

Corollary

$$cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists$$
 Menger $X, Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

• $\exists \operatorname{cf}(\mathfrak{d})$ -unbounded $X \subseteq [\mathbb{N}]^{\infty}$, $|X| = \operatorname{cf}(\mathfrak{d})$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X\subseteq [\mathbb{N}]^\infty$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y\subseteq \mathrm{P}(\mathbb{N})$, $X\times Y$ is not Menger

Corollary

$$\mathsf{cf}(\mathfrak{d}) < \mathfrak{d} \Rightarrow \exists \mathsf{Menger} \ X, Y \subseteq \mathsf{P}(\mathbb{N}), \ X \times Y \mathsf{\ is\ not\ Menger}$$

- $\exists \operatorname{cf}(\mathfrak{d})$ -unbounded $X \subseteq [\mathbb{N}]^{\infty}$, $|X| = \operatorname{cf}(\mathfrak{d})$
- $|X| = cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow X$ is Menger

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\ a\in A: a\leq \mathbf{c}\ \}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X\subseteq [\mathbb{N}]^\infty$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y\subseteq \mathrm{P}(\mathbb{N})$, $X\times Y$ is not Menger

Corollary

- $\exists \operatorname{cf}(\mathfrak{d})$ -unbounded $X \subseteq [\mathbb{N}]^{\infty}$, $|X| = \operatorname{cf}(\mathfrak{d})$
- $|X| = cf(\mathfrak{d}) < \mathfrak{d} \Rightarrow X$ is Menger
- ullet \exists Menger $Y\subseteq [\mathbb{N}]^{\infty}$, $X\times Y$ is not Menger

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\ a\in A: a\leq \mathbf{c}\ \}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c:a\in A\}$ are \mathfrak{d} -unbounded

 $A\subseteq [\mathbb{N}]^{\infty} \text{ is } \mathfrak{d}\text{-unbounded if } |A|\geq \mathfrak{d} \text{ and } \forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A: a\leq \mathbf{c}\,\}|<\mathfrak{d}$

 $A\subseteq [\mathbb{N}]^{\infty,\,\infty}$ is bi-đ-unbounded if A and $\{\,a^c:a\in A\,\}$ are đ-unbounded

 \mathfrak{r} : min card of $A\subseteq [\mathbb{N}]^{\infty}$, there is no $r\in [\mathbb{N}]^{\infty}$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^{\infty}$, there is no $r\in [\mathbb{N}]^{\infty}$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

 $\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists$ Menger $X, Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

P(ℕ)
Fin
$[\mathbb{N}]^{\infty,\infty}$
cFin

D(EI)

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

 $\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists$ Menger $X, Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

• $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists \text{ bi-d-unbounded } A \subseteq [\mathbb{N}]^{\infty, \infty}$

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d} -unbounded $A \subseteq [\mathbb{N}]^{\infty, \infty}$
- $A \cup \text{Fin}$ is Menger

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d} -unbounded $A \subseteq [\mathbb{N}]^{\infty, \infty}$
- $A \cup \text{Fin}$ is Menger
- $\tau : P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^c = a \oplus \mathbb{N}$

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^{\infty}$, there is no $r\in [\mathbb{N}]^{\infty}$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists \text{ bi-}\mathfrak{d}\text{-unbounded } A \subseteq [\mathbb{N}]^{\infty, \infty}$
- $A \cup \text{Fin}$ is Menger
- $\tau : P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^c = a \oplus \mathbb{N}$
- $X = \tau[A \cup Fin] = \{ a^c : a \in A \} \cup cFin \subseteq [\mathbb{N}]^{\infty}$

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^{\infty}$, there is no $r\in [\mathbb{N}]^{\infty}$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists \text{ bi-}\mathfrak{d}\text{-unbounded } A \subseteq [\mathbb{N}]^{\infty, \infty}$
- $A \cup \text{Fin}$ is Menger
- $\tau \colon \mathrm{P}(\mathbb{N}) \to \mathrm{P}(\mathbb{N}), \ \tau(a) = a^c = a \oplus \mathbb{N}$
- $X = \tau[A \cup \text{Fin}] = \{ a^c : a \in A \} \cup c\text{Fin} \subseteq [\mathbb{N}]^{\infty}$

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^{\infty}$, there is no $r\in [\mathbb{N}]^{\infty}$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

- $\mathfrak{d} < \mathfrak{r} \Leftrightarrow \exists \text{ bi-}\mathfrak{d}\text{-unbounded } A \subseteq [\mathbb{N}]^{\infty,\infty}$
- $A \cup \text{Fin}$ is Menger
- $\tau : P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^c = a \oplus \mathbb{N}$
- $X = \tau[A \cup Fin] = \{ a^c : a \in A \} \cup cFin \subseteq [\mathbb{N}]^{\infty}$
- \mathfrak{d} -unbounded $\{a^c : a \in A\} \subseteq X$

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists \text{ bi-}\mathfrak{d}\text{-unbounded } A \subseteq [\mathbb{N}]^{\infty, \infty}$
- $A \cup Fin$ is Menger
- $\tau : P(\mathbb{N}) \to P(\mathbb{N}), \ \tau(a) = a^c = a \oplus \mathbb{N}$
- $X = \tau[A \cup \text{Fin}] = \{ a^c : a \in A \} \cup \text{cFin} \subseteq [\mathbb{N}]^{\infty}$
- \mathfrak{d} -unbounded $\{a^c : a \in A\} \subseteq X$
- \exists Menger $Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

$$\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists$$
 Menger $X, Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A: a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c: a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

 $\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists$ Menger $X, Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller
X	X	X	X	X	X	X	

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A:a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c:a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

 $\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists$ Menger $X, Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller
X	X	X	X	X	X	X	?

 $A\subseteq [\mathbb{N}]^\infty$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^\infty}|\{a\in A:a\leq \mathbf{c}\}|<\mathfrak{d}$ $A\subseteq [\mathbb{N}]^{\infty,\infty}$ is bi- \mathfrak{d} -unbounded if A and $\{a^c:a\in A\}$ are \mathfrak{d} -unbounded \mathfrak{c} : min card of $A\subseteq [\mathbb{N}]^\infty$, there is no $r\in [\mathbb{N}]^\infty$ s.t. for all $a\in A$ $r\cap a$ and $r\setminus a$ are infinite

Corollary

 $\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists$ Menger $X, Y \subseteq P(\mathbb{N}), X \times Y$ is not Menger

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller
X	X	X	X	X	X	X	√ ?

Theorem? (Zdomskyy)

In the Miller model Menger is productive

Hurewicz's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that for each $x \in X$, the set $\{ n \in \mathbb{N} : x \notin \bigcup \mathcal{F}_n \}$ is finite

Hurewicz's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that for each $x \in X$, the set $\{ n \in \mathbb{N} : x \notin \bigcup \mathcal{F}_n \}$ is finite

 $Hurewicz \Rightarrow Menger$

Hurewicz's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that for each $x \in X$, the set $\{ n \in \mathbb{N} : x \notin \bigcup \mathcal{F}_n \}$ is finite

 σ -compact \Rightarrow Hurewicz \Rightarrow Menger

Hurewicz's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that for each $x \in X$, the set $\{ n \in \mathbb{N} : x \notin \bigcup \mathcal{F}_n \}$ is finite

 σ -compact \Rightarrow Hurewicz \Rightarrow Menger

Aurichi, Tall $(\mathfrak{d} = \aleph_1)$: metrizable productively Lindelöf \Rightarrow Hurewicz

Hurewicz's property: for every sequence of open covers $\mathcal{O}_1, \mathcal{O}_2, \ldots$ of X there are finite $\mathcal{F}_1 \subseteq \mathcal{O}_1, \mathcal{F}_2 \subseteq \mathcal{O}_2, \ldots$ such that for each $x \in X$, the set $\{ n \in \mathbb{N} : x \notin \bigcup \mathcal{F}_n \}$ is finite

 σ -compact \Rightarrow Hurewicz \Rightarrow Menger

Aurichi, Tall $(\mathfrak{d} = \aleph_1)$: metrizable productively Lindelöf \Rightarrow Hurewicz

Sz (ZFC): separable productively paracompact \Rightarrow Hurewicz

• $x \le^* y$ if $x(n) \le y(n)$ for almost all n

- $x \le^* y$ if $x(n) \le y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \nleq^* y$

- $x \le^* y$ if $x(n) \le y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \nleq^* y$
- Y is bounded if $\exists_{c \in [\mathbb{N}]^{\infty}} \forall_{y \in Y} \ y \leq^* c$

- $x \le^* y$ if $x(n) \le y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \nleq^* y$
- Y is bounded if $\exists_{c \in [\mathbb{N}]^{\infty}} \forall_{y \in Y} \ y \leq^* c$
- b: minimal cardinality of an unbounded set

- $x \leq^* y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \nleq^* y$
- Y is bounded if $\exists_{c \in [\mathbb{N}]^{\infty}} \forall_{y \in Y} \ y \leq^* c$
- b: minimal cardinality of an unbounded set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional X is Hurewicz \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is **unbounded**

- $x \leq^* y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \nleq^* y$
- Y is bounded if $\exists_{c \in [\mathbb{N}]^{\infty}} \forall_{y \in Y} \ y \leq^* c$
- b: minimal cardinality of an unbounded set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional X is Hurewicz \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is **unbounded**

- $x \leq^* y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \nleq^* y$
- Y is bounded if $\exists_{c \in [\mathbb{N}]^{\infty}} \forall_{y \in Y} \ y \leq^* c$
- b: minimal cardinality of an unbounded set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional X is Hurewicz \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is **unbounded**

- A Lindelöf X with $|X| < \mathfrak{b}$ is Hurewicz
- An unbounded $X \subseteq [\mathbb{N}]^{\infty}$ is not Hurewicz

Main theorem again

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\ a\in A: a\leq \mathbf{c}\ \}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X \subseteq [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y \subseteq P(\mathbb{N})$, $X \times Y$ is not Menger

Main theorem again

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\ a\in A: a\leq \mathbf{c}\ \}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X\subseteq [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y\subseteq \mathrm{P}(\mathbb{N})$, $X\times Y$ is not Menger

 $Y = A \cup \operatorname{Fin}$, A is \mathfrak{d} -unbounded

Main theorem again

 $A\subseteq [\mathbb{N}]^{\infty}$ is \mathfrak{d} -unbounded if $|A|\geq \mathfrak{d}$ and $\forall_{\mathbf{c}\in [\mathbb{N}]^{\infty}}|\{\,a\in A:a\leq \mathbf{c}\,\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X\subseteq [\mathbb{N}]^{\infty}$ contains a \mathfrak{d} -unbounded set or a cf(\mathfrak{d})-unbounded set, then there is a Menger $Y\subseteq \mathrm{P}(\mathbb{N})$, $X\times Y$ is not Menger

 $Y = A \cup \operatorname{Fin}$, A is \mathfrak{d} -unbounded

Tsaban, Zdomskyy:

H is Hurewicz and hereditarily Lindelöf $\Rightarrow H \times Y$ is Menger

X is productively Menger if for each Menger M, $X \times M$ is Menger

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

• Asm X prod Menger, $X \times H$ not Hurewicz

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces

productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

productively Menger ⇒ productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- ullet $(\mathfrak{b}=\mathfrak{d})$

 \exists dominating $\{s_{\alpha}: \alpha < \mathfrak{b}\}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha$

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b} = \mathfrak{d})$ \exists dominating $\{s_{\alpha} : \alpha < \mathfrak{b}\}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b} = \mathfrak{d})$ \exists dominating $\{s_{\alpha} : \alpha < \mathfrak{b}\}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b} = \mathfrak{d})$ \exists dominating $\{ s_{\alpha} : \alpha < \mathfrak{b} \}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d} -unbounded $\{y_{\alpha}: \alpha < \mathfrak{b}\} \subseteq Y$

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b} = \mathfrak{d})$ \exists dominating $\{ s_{\alpha} : \alpha < \mathfrak{b} \}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha \}$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d} -unbounded $\{y_{\alpha} : \alpha < \mathfrak{b}\} \subseteq Y$
- \exists Menger $M \subseteq P(\mathbb{N})$, $Y \times M$ not Menger

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b} = \mathfrak{d})$ \exists dominating $\{ s_{\alpha} : \alpha < \mathfrak{b} \}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d} -unbounded $\{y_{\alpha}: \alpha < \mathfrak{b}\} \subseteq Y$
- \exists Menger $M \subseteq P(\mathbb{N})$, $Y \times M$ not Menger
- $(X \times H) \times M \rightarrow Y \times M$, $(X \times H) \times M$ not Menger

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b} = \mathfrak{d})$ \exists dominating $\{s_{\alpha} : \alpha < \mathfrak{b}\}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d} -unbounded $\{y_{\alpha} : \alpha < \mathfrak{b}\} \subseteq Y$
- \exists Menger $M \subseteq P(\mathbb{N})$, $Y \times M$ not Menger
- $(X \times H) \times M \rightarrow Y \times M$, $(X \times H) \times M$ not Menger
- $H \times M$ is Menger, $X \times (H \times M)$ is Menger

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \to Y \subseteq [\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b} = \mathfrak{d})$ \exists dominating $\{s_{\alpha} : \alpha < \mathfrak{b}\}, s_{\beta} \leq^* s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d} -unbounded $\{y_{\alpha} : \alpha < \mathfrak{b}\} \subseteq Y$
- \exists Menger $M \subseteq P(\mathbb{N})$, $Y \times M$ not Menger
- $(X \times H) \times M \rightarrow Y \times M$, $(X \times H) \times M$ not Menger
- $H \times M$ is Menger, $X \times (H \times M)$ is Menger

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

What about general spaces?

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

What about general spaces?

Miller, Tsaban, Zdomskyy ($\mathfrak{d} = \aleph_1$): metrizable productively Lindelöf \Rightarrow productively Hurewicz metrizable productively Lindelöf \Rightarrow productively Menger

X is productively Menger if for each Menger M, $X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b} = \mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

What about general spaces?

Miller, Tsaban, Zdomskyy ($\mathfrak{d} = \aleph_1$): metrizable productively Lindelöf \Rightarrow productively Hurewicz metrizable productively Lindelöf \Rightarrow productively Menger

Theorem (Sz, Tsaban) $\mathfrak{d} = \aleph_1$, general spaces productively Lindelöf \Rightarrow productively Menger \Rightarrow productively Hurewicz

Sets of reals

Sets of reals

• $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?
- Any Lusin set is not productively Menger?

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

• $(\mathfrak{b} = \mathfrak{d})$ productively Menger \neq productively Hurewicz?

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

• $(\mathfrak{b} = \mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

• $(\mathfrak{b} = \mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

• $X \subseteq \mathbb{R}$, $|X| < \mathfrak{b} \Rightarrow X \times \text{Hurewicz}$ is Lindelöf?

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

• $(\mathfrak{b} = \mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

- $X \subseteq \mathbb{R}$, $|X| < \mathfrak{b} \Rightarrow X \times \text{Hurewicz}$ is Lindelöf?
- ullet ($\mathfrak{d}=leph_1$) productively Menger eq productively Hurewicz

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \mathsf{Menger}$ is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

• $(\mathfrak{b} = \mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

- $X \subseteq \mathbb{R}$, $|X| < \mathfrak{b} \Rightarrow X \times \text{Hurewicz}$ is Lindelöf?
- ullet ($\mathfrak{d}=leph_1$) productively Menger eq productively Hurewicz
- Any Sierpiński set is not productively Hurewicz? is not productively Menger? under CH?