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Menger's property: for every sequence of open covers 01, Oy, ... of X
there are finite /1 C O, F> C Oy, ... such that /1 UF, U... covers X

F1COs Fr C O ]:323

o-compact = Menger =- Lindelof

Aurichi: Every Menger space is D

Chodunsky, Repovs, Zdomskyy: Mengers property characterizes filters
whose Mathias forcing notion does not add dominating functions

Tsaban: The most general class for which a general form of Hindmans
Finite Sums Theorem holds
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[N]* 3 x = {x(1),x(2),...} : increasing enumeration, [N]>~ C NV

y
o x <y if x(n) <y(n)forall n

e x <*d if x(n) < y(n) for almost all n
@ Y is dominating if Vyejee Jyey x <"y

@ 0: minimal cardinality of a dominating set

Theorem (Hurewicz)

Assume that X is Lindelof and zero-dimensional
X is Menger < continuous image of X into [N]* is nondominating

@ A Lindelof X with | X| < d is Menger
e A dominating X C [N]> is not Menger
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Todor&evi¢ (ZFC):
There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger M C R whose square M x M is not Menger

Scheepers, Tsaban (cov(M) = cof(M)):
There is a Menger M C R whose square M x M is not Menger

Problem (sets of reals)

Find the minimal hypotheses that Menger's property is not productive

P(N) ~ {0,1}*“: the Cantor space
P(N) = [N]>* U Fin
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Theorem? (Zdomskyy)

In the Miller model Menger is productive
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Aurichi, Tall (9 = N1): metrizable productively Lindel6f = Hurewicz

Sz (ZFC): separable productively paracompact = Hurewicz
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o x <* y if x(n) < y(n) for almost all n
o y<®xifxLy
o Y is bounded if IgpjeeVyey ¥y <* ¢ Y

@ b: minimal cardinality of an unbounded set

Theorem (Hurewicz)

Assume that X is Lindelof and zero-dimensional
X is Hurewicz < continuous image of X into [N]* is unbounded

e A Lindelof X with |X]| < b is Hurewicz
@ An unbounded X C [N]>~ is not Hurewicz
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A C [N]= is 0-unbounded if [A] >0 and Vecpye|{a€ Ara<c} <D

Theorem (Sz, Tsaban)

If X C [N]>* contains a d-unbounded set or a cf(d)-unbounded set,
then there is a Menger Y C P(N), X x Y is not Menger

Y = AUFin, A is 0-unbounded

Tsaban, Zdomskyy:

H is Hurewicz and hereditarily Lindelof = H x Y is Menger
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Productivity of Menger and Hurewicz
X is productively Menger if for each Menger M, X x M is Menger

Theorem (Sz, Tsaban) b =0, hereditarily Lindeldf spaces

productively Menger = productively Hurewicz

What about general spaces?

Miller, Tsaban, Zdomskyy (2 = ®;):
metrizable productively Lindelof = productively Hurewicz
metrizable productively Lindelof = productively Menger

Theorem (Sz, Tsaban) 0 = Ny, general spaces

productively Lindelof = productively Menger = productively Hurewicz
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Open problems

Sets of reals

@ 0 <t < Menger is not productive?

@ Any Lusin set is not productively Menger?

Hereditarily Lindelof spaces

e (b =) productively Menger # productively Hurewicz?

General spaces

e X CR, |X| < b= Xx Hurewicz is Lindelof?
@ (0 =Ny) productively Menger # productively Hurewicz

@ Any Sierpinski set is not productively Hurewicz? is not productively
Menger? under CH?
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