
Definable Versions of Menger’s Conjecture

Franklin D. Tall and Seçil Tokgöz
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Definition 1
A space is Menger if whenever {Un}n<ω is a sequence of open
covers, there exist finite {Vn}n<ω such that Vn ⊆ Un and⋃
{Vn : n < ω} is a cover.

Menger: Are Menger subsets of R σ-compact?



Proposition 1 (Hurewicz 1925)

Completely metrizable (indeed, analytic) Menger spaces are
σ-compact.

Example 1 (Chaber-Pol 2002, Tsaban-Zdomskyy 2008)

There are Menger subsets of R which are not σ-compact.

Problem 1
Are “definable” Menger subsets of R σ-compact?

Proposition 2 (Miller-Fremlin 1988)

V = L implies there is a CA (complement of analytic) Menger
subset of R which is not σ-compact.



Definition 2
The projective subsets of R are obtained by closing the Borel sets
under continuous image and complementation.

Definition 3
Let X ⊆ ωω. In the game G (X ), player I picks a0 ∈ ω, player II
picks a1 ∈ ω, player I picks a2 ∈ ω, etc. I wins iff {an}n<ω ∈ X .
G (X ) is determined if either I or II has a winning strategy. The
Axiom of Projective (co-analytic) Determinacy says all
projective (co-analytic) games are determined.



Theorem 3 (Miller-Fremlin, TT)

PD (CD) implies all projective (co-analytic) Menger subsets of R
are σ-compact.

Theorem 4 (TT)

If there is a measurable cardinal, then co-analytic Menger subsets
of R are σ-compact.

It is known that CD is equiconsistent with a measurable.

Problem 2
Without large cardinals, is it consistent that co-analytic
(projective?) Menger subsets of R are σ-compact?



Theorem 5 (T-Todorcevic-T)

If it is consistent there is an inaccessible cardinal, it is consistent
that projective Menger subsets of R are σ-compact.

Proof.
Use a strengthening OCA(projective) of Todorcevic’s Open
Coloring Axiom mentioned in Feng (1993):

OCA(projective) If X ⊆ R is uncountable projective and
[X ]2 = K0 ∪K1 is a partition with K0 open in the relative topology,
then either there is a perfect A ⊆ X with [A]2 ⊆ K0, or
X =

⋃
n<ω An, with [An]2 ⊆ K1 for all n < ω.

Theorem 6 (Feng)

OCA(projective) is equiconsistent with an inaccessible cardinal.

Hurewicz Dichotomy for projective sets Let E be a compact
metrizable space and let A,B be disjoint projective subsets of E .
Either there is a σ-compact C ⊆ E such that A ⊆ C and
C ∩ B = ∅, or there is a copy F of the Cantor set such that
F ⊆ A ∪ B and F ∩ B is countable dense in F .



Problem 3
Can Hurewicz’ theorem be extended to non-metrizable spaces?

Definition 4
A space is analytic if it is a continuous image of the space P of
irrationals.

Proposition 7 (Arhangel’skĭı 1986)

Analytic Menger spaces are σ-compact.

Theorem 8 (TT)

Čech-complete Menger spaces are σ-compact.

Proof.
A Čech-complete Lindelöf space is a perfect pre-image of a
separable metrizable space. A perfect image of a Čech-complete
space is Čech-complete. A continuous image of a Menger space is
Menger. A perfect pre-image of a σ-compact space is
σ-compact.



Definition 5
A space is co-analytic if its Čech-Stone remainder is analytic.

Problem 4
Is it consistent that co-analytic Menger spaces are σ-compact?

Example 2

There is a continuous image of a co-analytic space which is not
σ-compact.

Okunev’s space Take the Alexandrov duplicate of P and collapse
the non-discrete copy of P to a point. See Burton-Tall 2012 for
details.

Theorem 9 (Tall 2016, Tokgöz 2016)

It is undecidable whether co-analytic Menger topological groups
are σ-compact.



Theorem 10 (TT)

CD implies co-analytic Menger spaces are σ-compact if they either
have closed sets Gδ or are

∑∑∑
-spaces.



Productive Lindelöfness

Definition 6
A space X is productively Lindelöf if for every Lindelöf Y ,
X × Y is Lindelöf.

Proposition 11

Productively Lindelöf spaces are consistently Menger.
(Repovs-Zdomskyy 2012, Alas-Aurichi-Junqueira-Tall 2011, Tall
2013)

Problem 5
Are productively Lindelöf co-analytic spaces σ-compact?



Theorem 12
CH implies productively Lindelöf, co-analytic, nowhere locally
compact spaces are σ-compact.

Theorem 13
There is a Michael space (i.e. a Lindelöf space X such that X × P
is not Lindelöf) iff productively Lindelöf Čech-complete spaces are
σ-compact.



Another generalization of definability

Definition 7 (Froĺık)

A space is K-analytic if it is a continuous image of a Lindelöf
Čech-complete space.

Example 3

Okunev’s space is a K-analytic productively Lindelöf Menger space
which is not σ-compact.

Theorem 14
K-analytic co-analytic Menger spaces are σ-compact.

Proof.
Such a space X is a Lindelöf p-space since both it and its
remainder are Lindelöf

∑∑∑
. Let X map perfectly onto a metrizable

M. Then M is analytic and Menger, so is σ-compact, so X is
also.



Definition 8
A space is Hurewicz if every Čech-complete space including it
includes a σ-compact subspace including it.

Lemma 15
σ-compact → Hurewicz → Menger. No arrow reverses, even for
subsets of R.

Okunev’s space is Hurewicz.

Definition 9 (Arhangel’skĭı 2000)

A space is projectively σ-compact if each continuous separable
metrizable image of it is σ-compact.



Theorem 16
Every K-analytic Menger space is Hurewicz.

Proof.
Each such space is projectively σ-compact.

Definition 10 (Rogers-Jayne 1980)

A space is K-Lusin if it is an injective continuous image of P.

Problem 6
Is every Menger K-Lusin space σ-compact?



Lemma 17 (Rogers-Jayne 1980)

The following are equivalent for a K-Lusin X :

(a) X includes a compact perfect set;

(b) X admits a continuous real-valued function with uncountable
range;

(c) X is not the countable union of compact subspaces which
include no perfect subsets. In particular, if X is not
σ-compact, it includes a compact perfect set.

From this, we can conclude that Okunev’s space is not K-Lusin,
since it is not σ-compact but doesn’t include a compact perfect set.



Indeed we have:

Definition 11
A space is Rothberger if whenever {Un}n<ω are open covers,
there exists a cover {Un}n<ω,Un ∈ Un.

Thus Rothberger is a strengthening of Menger.

Lemma 18 (Aurichi 2010)

Rothberger spaces do not include a compact perfect set.



Theorem 19
K-analytic Rothberger spaces are projectively countable.

Proof.
They are projectively σ-compact.

Corollary 20

K-Lusin Rothberger spaces are σ-compact.

Proof.
This follows from Lemma 17.
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Velicković, B. Applications of the Open Coloring Axiom. In Set Theory of
the Continuum, eds. H. Judah, W. Just, W. A. Woodin, MSRI Publ. v.
26, 1992, pp.137-154.


