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Some Motivation

For every n ≥ 1, let us denote:
cc(Rn) the hyperspace of all compact convex subsets of Rn,
cb(Rn) the hyperspace of all compact convex bodies of Rn,

equipped with the Hausdorff metric topology:

dH(A,B) = max

{
sup
b∈B

d(b,A), sup
a∈A

d(a,B)

}
,

where d is the Euclidean metric and d(b,A) = inf{d(b,a) | a ∈ A}.
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Theorem (Nadler, Quinn, and Stavrakas (1979))
1 For n ≥ 2, cc(Rn) is homeomorphic to Q \ {pt}, where

Q = [0,1]ℵ0 , the Hilbert cube,
2 For n ≥ 2, cc(Bn) is homeomorphic to the Hilbert cube Q, where
Bn stands for the closed unit ball of Rn.

Question
1 What is the topological structure of cb(Rn), n ≥ 2 ?
2 What is the topological structure of cb(Bn), n ≥ 2 ?

Theorem (S. Antonyan and N. Jonard-PÃ©rez (2013))

cb(Rn) is homeomorphic to Q × Rn(n+3)/2.
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Affine group action on cb(Rn)

Question: Why is important to study cb(Rn) and its orbit spaces?

Answer: cb(Rn)/Aff (n) ∼= BM(n) – the Banach-Mazur compactum.

Lets recall BM(n).
In his 1932 book Théorie des Opérations Linéaires, S. Banach
introduced the space of isometry classes [X ], of n-dimensional Banach
spaces X equipped with the well-known Banach-Mazur metric:

d([X ], [Y ]) = log inf
{
‖T‖ · ‖T−1‖ | T : X → Y a linear isomorphism

}
BM(n) = {[X ] | dim X = n}

the Banach-Mazur compactum.
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• It is a challenging open problem whether BM(n) ∼= Q, n ≥ 3?
• It is known that BM(2) � Q (Ant., Fund Math. 2002)

Our approach is largely based on the study of the natural affine group
action Aff (n) y cb(Rn).

Aff(n) is the group of all non-singular affine transformations of Rn.
g ∈ Aff(n) iff g(x) = v + σ(x) for every x ∈ Rn, where σ ∈ GL(n) and v
is a fixed vector.

Definition
For a topological group G and a space X , an action G y X is a
continuous map

G × X → X , (g, x) 7→ gx

such that
(g · h)x = g(hx)

ex=x
for all g,h ∈ G, e – the identity of G, and x ∈ X .

S. Antonyan (UNAM) Hiperspace of convex sets July 27, 2022 6 / 23



• It is a challenging open problem whether BM(n) ∼= Q, n ≥ 3?
• It is known that BM(2) � Q (Ant., Fund Math. 2002)

Our approach is largely based on the study of the natural affine group
action Aff (n) y cb(Rn).

Aff(n) is the group of all non-singular affine transformations of Rn.
g ∈ Aff(n) iff g(x) = v + σ(x) for every x ∈ Rn, where σ ∈ GL(n) and v
is a fixed vector.

Definition
For a topological group G and a space X , an action G y X is a
continuous map

G × X → X , (g, x) 7→ gx

such that
(g · h)x = g(hx)

ex=x
for all g,h ∈ G, e – the identity of G, and x ∈ X .

S. Antonyan (UNAM) Hiperspace of convex sets July 27, 2022 6 / 23



For x ∈ X , the orbit is G(x) = {gx | g ∈ G}.

X/G = {G(x) | x ∈ X}

denotes the orbit set.

p : X → X/G, p : x 7→ G(x), is the orbit map.
X/G, equipped with the quotient topology, is called orbit space.

Aff(n) acts on cb(Rn) by the following rule:

Aff(n)× cb(Rn)→ cb(Rn)

(g,A) 7→ gA = {g(a) | a ∈ A}.
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Theorem
The action Aff (n) y cb(Rn) is proper.

Definition (Palais, 1961)
An action of a locally compact Hausdorff group G on a Tychonoff
space X is proper if every point x ∈ X has a neighborhood Vx such
that for any point y ∈ X there is a neighborhood Vy with the property
that the transporter from Vx to Vy

〈Vx ,Vy 〉 = {g ∈ G | gVx ∩ Vy 6= ∅}

has compact closure in G.
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Theorem
1 The action Aff (n) y cb(Rn) is proper.
2 There exists a global O(n)-slice S for cb(Rn).
3 cb(Rn) ∼= S × Aff (n)/O(n).

Where comes the number n(n + 3)/2 from?
in the above mentioned result:

cb(Rn) ∼= Q × Rn(n+3)/2.

Answer:

Aff (n)/O(n) ∼= Rn(n+3)/2.
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To obtain the final result

cb(Rn) ∼= Q × Rn(n+3)/2,

it remains to find
a convenient O(n)-slice S for cb(Rn) such that S ∼= Q.
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Global Slices

Definition
Let G := Aff (n), H := O(n) and X := cb(Rn).
A subset S ⊂ X is called a global H-slice, if the following conditions
hold:

G(S) = X , where G(S) =
⋃

g∈G gS.
S is closed in G(S).
S is H-invariant.
gS ∩ S = ∅ for all g ∈ G \ H.
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The John ellipsoid

For every compact convex body A ∈ cb(Rn) there exists a unique
minimal volume ellipsoid j(A) containing A. The ellipsoid j(A) is called
the John (sometimes also the Löwner) ellipsoid of A.
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For every n ≥ 2, lets denote by J(n) the following set:

J(n) = {A ∈ cb(Rn) | j(A) = Bn}.
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Theorem
J(n) is a global O(n)-slice for the action Aff (n) y cb(Rn).

Hence,

cb(Rn) ∼= J(n)× Rn(n+3)/2.

Theorem
J(n) ∼= Q.
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Hiperspaces of Bn

For every n ≥ 2, we denote:
cc(Bn) – the hyperspace of all compact convex subsets of Bn,
cb(Bn) – the hyperspace of all compact convex bodies of Bn.

It is known that cc(Bn) ∼= Q (Nadler et al).

But
What is cb(Bn)?

Theorem
cb(Bn) ∼= Q \ {∗}.
Moreover, for any closed subgroup K < O(n) that acts
non-transitively on the unit sphere Sn−1, the orbit space
cb(Bn)/K ∼= Q \ {∗}.
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While the topological structure of the orbit space cb(Bn)/O(n) remains
unknown,
for the orbit space cc(Bn)/O(n) we have the following

Theorem (Ant, Jonard-Pérez)

cc(Bn)/O(n) ∼= Cone(BM(n)).

Conjecture

cc(Bn)/O(n) � Q.
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Another interesting geometrically defined hyperspaces are related to
the Čebyshev ball. Recall that for any compact subset A ⊂ Rn, there
exists a unique ball Č(A) of minimum radius that contains A. It is called
Čebyshev ball or circumball of A.

č(Bn) := {A ∈ cc(Bn) | Č(A) = Bn}.

čb(Bn) := {A ∈ cb(Bn) | Č(A) = Bn}.
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Where they come from?
Again consider the hyperspace cb(Rn). Now consider the natural
action of the similarity group Sim(n) y cb(Rn).

Here Sim(n) < Aff (n) and every g ∈ Sim(n) is defined as

g(x) = u + tσ(x) u ∈ Rn, σ ∈ O(n), t > 0.

Since the action Sim(n) y cb(Rn) is proper, we have

Theorem
1 čb(Bn) is a global O(n)-slice for the action Sim(n) y cb(Rn).
2 cb(Rn) ∼= čb(Bn)× Sim(n)/O(n).
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Since Sim(n)/O(n) ∼= Rn+1, we get

cb(Rn) ∼= čb(Bn)× Rn+1.

From the other hand,

cb(Rn) ∼= J(n)× Rn(n+3)/2,

Hence,

čb(Bn)× Rn+1 ∼= J(n)× Rn(n+3)/2 ∼= Q × Rn(n+3)/2.

This makes me believe this

Conjecture

čb(Bn) ∼= Q × R(n+2)(n−1)/2.
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Theorem
1 č(Bn) ∼= Q,
2 čb(Bn) is an open O(n)-invariant subset of the Hilbert cube č(Bn),
3 The complement č(Bn) \ čb(Bn) is a Z-subset and

č(Bn) \ čb(Bn) ∼= RPn−1

Recall that a Z -set here means that for every ε > 0, there exists a
continuous map

f : č(Bn)→ čb(Bn) such that d(f (A),A) < ε, ∀ A ∈ č(Bn).
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As to the orbit spaces, we have the following

Theorem
For any closed subgroup K < O(n) that acts non-transitively on the
unit sphere Sn−1,

1 č(Bn)/K ∼= Q,
2 čb(Bn)/K is an open O(n)-invariant subset of the Hilbert cube

č(Bn)/K whose complement č(Bn) \ čb(Bn) is a Z-subset.
3 č(Bn)/O(n) ∼= BM(n),
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The End

Thank you very much!
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