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Banach lattices

Definition

A Banach lattice is a vector lattice L that is also a Banach space
and for all x,y € L, |x| <|y| = ||x|| <[yl

o C(K), LP(u) with f < g iff f(x) < g(x) for (almost) all x.
@ Spaces with unconditional basis with coordinatewise order: /s,
lp....
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The structure space

E, is always vector lattice isomorphic to a unique C(K).

K := Ky(E)

When E, = E, K = K(E).
All K are of the form K(E); Take E = C(K).

Definition
A sick compactum is Ky (E) for E a separable Banach lattice.

@ What compact spaces are sick?

= How do separable Banach lattices look like as vector lattices?
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First examples of sick compacta

o C(K)1 = C(K).
So metrizable K are sick.

o C(K)r={g:lg|<nf}={f-h:he Cy(f #0)} ~ C(B{f #0}).
So BW with W open in metrizable compact are sick.
In particular BN is sick.

o L1[0, 1]1 = LW[O, 1].
The Stone space of the Lebesgue measure algebra is sick.

o E<s F= K(F)— K(E), and E — F = K(E)— K(F).
E=C(2Y,L1]0,1]) — surjective universal sick compactum
E = Free(N) — injective universal sick compactum
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Sick have analytic strictily positive measures

Every sick K admits strictly positive measure of countable type.
C(K) < Li(u) = Polish space.
Moreover C(K) is analytic subset of Ly(ut).

“Analytic” nature of sick compacta shows in different ways

If {z,} are Gs-points, then {(f(z,)),: f € C(K)} is an analytic
subset of RY.

True for Rosenthal compacta and any points (Godefroy)

Every measure in a Rosenthal compactum is of countable type and
analytic. Converse true if K is separable .

(Bourgain/Todorcevic/Marciszewski,Sobota-Plebanek).
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A lot of BN

If K is sick, then 3M; C M, C --- K closed metrizable, such that if

x; € M; discrete, then {x,} = BN.

Proof: T: C(K)— E,

My={te K:|Tf|>2"for |f| <1,f(t)=1} [

If K is sick and L C K is closed, then either L is metrizable or L
contains BN.

BN x BN is not sick.
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For an algebra B C Z?(N) that contains fin, TFAE.

@ B is the algebra of clopens of a sick compactum

@ There are disjoint {x,} in a separable Banach lattice such that

B = {A CN: Elsupx,,}

neA

@ If ¥ callxnl| < oo, then A is hereditarily in B.

o Ais (hereditarily in B): iff 0 & {||x,|[ : n € A}.

o (hereditarily in B)* is a countably generated ideal.
o BN x 2N is not sick.
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Non-pathological analytic P-ideals

These are ideals of the form

,ﬂ:{AQN:Iimsup Z c,,zO} for C C cooN ¥y

m c€CpeAn>m
@ Summable ideals. If lim,A, =0,

f_{AcN:Z)Ln<+oo}

neA

@ Density 0 ideal.

f:{AcN:lim’Am{l"“’”}‘ :o}

n
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Non-pathological analytic P-ideals

Theorem

If 7 is a non-pathological analytic P-ideal, then the Stone space
of ZU.Z is a sick compactum.

Theorem (Borodulin-Nadzieja, Farkas + Plebanek)

¥ is a non-pathological P-ideal iff
there is an unconditional basis {e,} such that

J:{AC:@(N):EIZen}

neA

We add e = supe, to their space, similarly as one does with ¢y to
obtain c.

(t1,t2,...) :sup{Zc,-]t,-\ cceCh, E={(en(1,1,1,...))



