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Banach lattices

Definition

A lattice is a partially ordered set (L,≤) such that every two
elements x and y have a supremum x ∨y and an infimum x ∧y .

Definition

A vector lattice is a (real) vector space L that is also a lattice and

x ≤ x ′, y ≤ y ′, r ,s ≥ 0 ⇒ rx + sy ≤ rx ′+ sy ′

Definition

A Banach lattice is a vector lattice L that is also a Banach space
and for all x ,y ∈ L, |x | ≤ |y | ⇒ ‖x‖ ≤ ‖y‖

|x |= x ∨−x
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C (K ), Lp(µ) with f ≤ g iff f (x)≤ g(x) for (almost) all x .

Spaces with unconditional basis with coordinatewise order: `2,
`p....
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Principal ideals

Definition

Y ⊂ E is a (nonclosed) ideal if

Y is a vector subspace,

If f ∈ Y and |g | ≤ |f |, then g ∈ Y .

Principal ideal generated by x :

Ex = {f : ∃λ > 0 |f | ≤ λ |x |}

Example: L1[0,1]1 = L∞[0,1].

Theorem (Lotz 1969, Schaefer, Kakutani)

Ex is always vector lattice isomorphic to a unique C (K ).
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The structure space

Theorem

Ex is always vector lattice isomorphic to a unique C (K ).

K := Kx(E )

When Ex = E , K = K (E ).
All K are of the form K (E ); Take E = C (K ).

Definition

A sick compactum is Kx(E ) for E a separable Banach lattice.

What compact spaces are sick?

= How do separable Banach lattices look like as vector lattices?
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First examples of sick compacta

C (K )1 = C (K ).
So metrizable K are sick.

C (K )f = {g : |g | ≤ nf }= {f ·h : h∈Cb(f 6= 0)}∼C (β{f 6= 0}).
So β W with W open in metrizable compact are sick.
In particular βN is sick.

L1[0,1]1 = L∞[0,1].
The Stone space of the Lebesgue measure algebra is sick.

E ↪→ F ⇒ K (F ) � K (E ), and E � F ⇒ K (E ) ↪→ K (F ).
E = C (2N,L1[0,1]) −→ surjective universal sick compactum
E = Free(N) −→ injective universal sick compactum
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Sick have analytic strictily positive measures

Theorem

Every sick K admits strictly positive measure of countable type.

C (K ) ↪→ L1(µ) = Polish space.

Moreover C (K ) is analytic subset of L1(µ).

“Analytic” nature of sick compacta shows in different ways

Theorem

If {zn} are Gδ -points, then {(f (zn))n : f ∈ C (K )} is an analytic
subset of RN.

True for Rosenthal compacta and any points (Godefroy)

Theorem

Every measure in a Rosenthal compactum is of countable type and
analytic. Converse true if K is separable .

(Bourgain/Todorcevic/Marciszewski,Sobota-Plebanek).
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A lot of βN

Theorem

If K is sick, then ∃M1 ⊆M2 ⊆ ·· ·K closed metrizable, such that if
xi 6∈Mi discrete, then {xn}= βN.

Proof: T : C (K ) ↪→ E ,

Mn = {t ∈ K : ‖Tf ‖ ≥ 2−n for |f | ≤ 1, f (t) = 1}

Corollary

If K is sick and L⊆ K is closed, then either L is metrizable or L
contains βN.

Corollary

βN×βN is not sick.
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Clopen algebras as algebras of suprema

Theorem

For an algebra B ⊆P(N) that contains fin, TFAE.

1 B is the algebra of clopens of a sick compactum

2 There are disjoint {xn} in a separable Banach lattice such that

B =

{
A⊆ N : ∃sup

n∈A
xn

}

If ∑n∈A ‖xn‖< +∞, then A is hereditarily in B.

A is (hereditarily in B)⊥ iff 0 6∈ {‖xn‖ : n ∈ A}.
(hereditarily in B)⊥ is a countably generated ideal.

βN×2N is not sick.
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Non-pathological analytic P-ideals

These are ideals of the form

I =

{
A⊆ N : lim

m
sup
c∈C

∑
n∈A,n≥m

cn = 0

}
for C ⊂ c00∩ `+

1

Summable ideals. If limn λn = 0,

I =

{
A⊂ N : ∑

n∈A
λn < +∞

}

Density 0 ideal.

I =

{
A⊂ N : lim

n

|A∩{1, . . . ,n}|
n

= 0

}
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Non-pathological analytic P-ideals

Theorem

If I is a non-pathological analytic P-ideal, then the Stone space
of I ∪F is a sick compactum.

Theorem (Borodulin-Nadzieja, Farkas + Plebanek)

J is a non-pathological P-ideal iff
there is an unconditional basis {en} such that

I =

{
A⊂P(N) : ∃∑

n∈A
en

}

We add e = supen to their space, similarly as one does with c0 to
obtain c .

(t1, t2, . . .) = sup{∑ci |ti | : c ∈ C}, E = 〈en,(1,1,1, . . .)〉
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