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® A compact space is hereditarily indecomposable if for every
subcontinua C,Dwe have CC DorDC Cor CND = 0.

® A continuum is arc-like if it is the limit of an inverse sequence
of continuous surjections on the unit interval I.

® By a theorem of Bing (1951), there is a unique arc-like
hereditarily indecomposable continuum — the pseudo-arc PP.

® In a metric space, x . y means d(x,y) < . For maps
f,g: X =Y, f~.g meanssup,xd(f(x),g(x)) <e.
® | et 7 denote the category of all continuous surjections on T,

let 0Z denote the category of all arc-like continua and
continuous surjections.
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® There is a general notion of e-crooked map between metric
compacta, based on ideas of Krasinkiewicz-Minc (1976) and
Mackowiak (1985), that simplifies to the definition above for 1.

® A space X is crooked iff idx is crooked, where crooked means
e-crooked for every ¢ > 0.
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e If f is e-crooked, sois f o g.

e If g is d0-crooked and f is (e, §)-continuous,
then f o g is e-crooked.

e If f is e-crooked and f =5 g, then g is (¢ 4 26)-crooked.

Theorem

Let (X., f.) be a sequence of metric compact spaces with limit
(X0, fr,00). The following conditions are equivalent:

Xoo is hereditarily indecomposable.
X is crooked.
Every map f; oo, n € w, is crooked.

f, is a crooked sequence, i.e. for every n € w and € > 0 there
is m > n such that f, , is e-crooked.

So to obtain a hereditarily indecomposable continuum, it is enough
to build a crooked sequence.
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They considered the category Za of connected finite linear
graphs and quotient maps.

Za has a Fraissé limit Pao — the Cantor space endowed with a
special closed equivalence ~ relation such that Pa/~ is the
pseudo-arc P.

They characterized P as the unique arc-like continuum such
that for every continuous surjections f,g: P — Y onto an
arc-like continuum Y and € > 0, there is a homeomorphism
h: P — P such that f ~. g o h.

It follows that P maps onto every arc-like continuum as well
as that every continuous surjection P — P is arbitrarily close
to a homeomorphism.

The characterization condition above looks like an
approximate version of projective homogeneity.
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Let L C £ be MU-categories (categories where the hom-sets are
metric spaces, subject to some coherence axioms; generalizes
metric-enriched category; imagine (Z,0Z) as (K, L)).

We say that an L-object U is

e cofinal in (IC, L) if for every K-object X there is an £-map
U— X,

® homogeneous in (IC, L) if for every L-maps f,g: U — X to a
K-object and € > 0 there is an automorphism h: U — U such
that f ~. go h,

e projective in (KC, L) if for every K-map g: Y — X, L-map
f: U—Y, and € > 0 there is an L-map h: U — X such that
f~.goh.

The pair (IC, L) is a free completion if it satisfies certain conditions
(L1), (L2), (F1), (F2), (C) assuring that L arised essentially by
freely and continuously adding all limits of sequences to /.
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Let (IC, L) be a free completion. The following conditions are
equivalent for an L-object U.

U is cofinal and homogeneous in (K, £).

U is cofinal and projective in (IC, L).

U is cofinal and homogeneous in £ (meaning in (£, L)).

U is cofinal and projective in L.

U is an L-limit of a Fraissé sequence in .
Such object U is unique up to isomorphism and is called the
Fraissé limit.
Moreover, a Fraissé sequence in C exists, and so the Fraissé limit
exists, if and only if K is directed, dominated by a countable

subcategory, and has the amalgamation property (for every
f,g € K and € > 0 there are f', g’ € K with f' o f =, g’ o g).
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continua, with continuous surjections) is a free completion.

® For every MU-subcategory KL C MConts we define
olC C MContg, the closure of I under limits of K-sequences,
limit-factorizing maps, and local closure.

® For every full P C CPolg, oP is the full subcategory
consisting of all P-like continua, (P,oP) is a free completion,
and P is a Fraissé category, and so the Fraissé limit exists, if
and only if P has the amalgamation property.

® By a result of Russo (1979) there is no cofinal object in 0P
unless P C {x,I,S}.

® It turns out 0P has a Fraissé limit if and only if P C {x, I}
(and the limit is P or %), and it has a cofinal object if and only
if P C {x,I,S} (and the cofinal object is the universal
pseudo-solenoid Py if S € P).
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sequence.
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arc-like continuum, and so P by Bing's theorem.

Theorem (somewhat folklore)

For every Z-map g and every € > 0 there is 6 > 0 such that for
every d-crooked f € 7 there is h € Z with f ~. go h.

® So on the other hand, every crooked Z-sequence is Fraissé,
every hereditarily indecomposable arc-like continuum is a
Fraissé limit, and Bing's theorem follows by uniqueness of
Fraissé limits.
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deg(f) € Z and that deg: S — Z is a functor.

® |et I1 denote the set of all primes, let P C 1, and let Sp C S
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e |t follows from results by Rogers (1970) that every Sp has AP.
® We have proved that (Sp,oSp) is a free completion.

® Hence, every (Sp,0Sp) has a Fraissé limit Pp.

® But what is Pp and what is 0Sp (it is not full in ¢S)?
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e Let N denote the monoid of supernatural numbers
s: M — NU {oo} (representing [,y p°(P)) together with 0.
e We put s ~s" if {pe:s(p)+#s(p’)} is finite and
s71(00) = (s')"%(c0). We call members of N/~ types.
® For 5,5 € N/~, a T-map S — S’ is a function
SU{0} — S’ U {0} that is the multiplication by some t € N.
® |et 7 denote the category of types and 7T-maps. There is a
contravariant type functor T: oS — T extending the degree.
® By Fearnley (1972) there is exactly one hereditarily
indecomposable circle-like continuum of each type S, the
S-adic pseudo-solenoid.
® These include the pseudo-arc (type 0), the pseudo-circle
(type 1), the universal pseudo-solenoid (type I1°°), and more
generally P-adic pseudo-solenoids (type P> for P C ).
e A circle-like continuum X is an oSp-object iff T(X) < P>. A
continuous surjection f: X — Y between oSp-objects is a
oSp-map iff T(f) is a multiplication by t < P,
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® By absorption, the Fraissé sequence in Sp is of type P* and
is crooked since there are arbitrarily crooked continuous
surjections S — S of any degree.

® Hence, the Fraissé limit Pp of (Sp,0Sp) is the P-adic
pseudo-solenoid by the uniqueness result by Fearnley (1972).

® On the other hand, it follows from a theorem by Kawamura
(1989) that an Sp-sequence of type P> is crooked if and only
if it is Fraissé in Sp.

® Hence, the uniqueness of the P-adic pseudo-solenoid follows
from the uniqueness of the Fraissé limit.
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The pseudo-solenoid case

Together, we obtain:

The P-adic pseudo-solenoid Pp is characterized by any of the
following conditions.

Pp is a hereditarily indecomposable circle-like continuum of
type P°.

Pp is a homogeneous object in Sp (or (Sp,oSp)).

Pp is a projective object in oSp (or (Sp,oSp)).

® Every cS-map P — Y onto a non-planar circle-like
continuum is a cSp-map, and so homogeneity applies.

® As a by-product we easily obtain the known facts that P
continuously maps onto every circle-like continuum and that
every continuous surjection Pn — P is a near-homeomorphism.

Thank you.



