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Hereditarily indecomposable continua

• A continuum is a compact connected space.

• A compact space is hereditarily indecomposable if for every
subcontinua C ,D we have C ⊆ D or D ⊆ C or C ∩ D = ∅.

• A continuum is arc-like if it is the limit of an inverse sequence
of continuous surjections on the unit interval I.

• By a theorem of Bing (1951), there is a unique arc-like
hereditarily indecomposable continuum – the pseudo-arc P.

• In a metric space, x ≈ε y means d(x , y) < ε. For maps
f , g : X → Y , f ≈ε g means supx∈X d(f (x), g(x)) < ε.

• Let I denote the category of all continuous surjections on I,
let σI denote the category of all arc-like continua and
continuous surjections.
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Hereditarily indecomposable continua

Definition
A continuous map f : I → I is ε-crooked if for every x ≤ y ∈ I
there are x ≤ y ′ ≤ x ′ ≤ y such that f (x) ≈ε f (x ′) and
f (y) ≈ε f (y ′).

• For every ε > 0 there is an ε-crooked surjection I → I.

• There is a general notion of ε-crooked map between metric
compacta, based on ideas of Krasinkiewicz–Minc (1976) and
Maćkowiak (1985), that simplifies to the definition above for I.

• A space X is crooked iff idX is crooked, where crooked means
ε-crooked for every ε > 0.
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Hereditarily indecomposable continua

• If f is ε-crooked, so is f ◦ g .

• If g is δ-crooked and f is ⟨ε, δ⟩-continuous,
then f ◦ g is ε-crooked.

• If f is ε-crooked and f ≈δ g , then g is (ε + 2δ)-crooked.

Theorem
Let ⟨X∗, f∗⟩ be a sequence of metric compact spaces with limit
⟨X∞, f∗,∞⟩. The following conditions are equivalent:

1 X∞ is hereditarily indecomposable.
2 X∞ is crooked.
3 Every map fn,∞, n ∈ ω, is crooked.
4 f∗ is a crooked sequence, i.e. for every n ∈ ω and ε > 0 there

is m ≥ n such that fn,m is ε-crooked.

So to obtain a hereditarily indecomposable continuum, it is enough
to build a crooked sequence.
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Fraïssé theory

• Irwin and Solecki (2006) introduced projective Fraïssé theory.

• They considered the category I∆ of connected finite linear
graphs and quotient maps.

• I∆ has a Fraïssé limit P∆ – the Cantor space endowed with a
special closed equivalence ∼ relation such that P∆/∼ is the
pseudo-arc P.

• They characterized P as the unique arc-like continuum such
that for every continuous surjections f , g : P → Y onto an
arc-like continuum Y and ε > 0, there is a homeomorphism
h : P → P such that f ≈ε g ◦ h.

• It follows that P maps onto every arc-like continuum as well
as that every continuous surjection P → P is arbitrarily close
to a homeomorphism.

• The characterization condition above looks like an
approximate version of projective homogeneity.
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Fraïssé theory

Definition
Let K ⊆ L be MU-categories (categories where the hom-sets are
metric spaces, subject to some coherence axioms; generalizes
metric-enriched category; imagine ⟨I, σI⟩ as ⟨K,L⟩).

We say that an L-object U is

• cofinal in ⟨K,L⟩ if for every K-object X there is an L-map
U → X ,

• homogeneous in ⟨K,L⟩ if for every L-maps f , g : U → X to a
K-object and ε > 0 there is an automorphism h : U → U such
that f ≈ε g ◦ h,

• projective in ⟨K,L⟩ if for every K-map g : Y → X , L-map
f : U → Y , and ε > 0 there is an L-map h : U → X such that
f ≈ε g ◦ h.

The pair ⟨K,L⟩ is a free completion if it satisfies certain conditions
(L1), (L2), (F1), (F2), (C) assuring that L arised essentially by
freely and continuously adding all limits of sequences to K.
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Fraïssé theory

Theorem
Let ⟨K,L⟩ be a free completion. The following conditions are
equivalent for an L-object U.

1 U is cofinal and homogeneous in ⟨K,L⟩.
2 U is cofinal and projective in ⟨K,L⟩.
3 U is cofinal and homogeneous in L (meaning in ⟨L,L⟩).
4 U is cofinal and projective in L.
5 U is an L-limit of a Fraïssé sequence in K.

Such object U is unique up to isomorphism and is called the
Fraïssé limit.

Moreover, a Fraïssé sequence in K exists, and so the Fraïssé limit
exists, if and only if K is directed, dominated by a countable
subcategory, and has the amalgamation property (for every
f , g ∈ K and ε > 0 there are f ′, g ′ ∈ K with f ′ ◦ f ≈ε g ′ ◦ g).
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Fraïssé theory

• ⟨CPols,MConts⟩ (connected polyhedra and metrizable
continua, with continuous surjections) is a free completion.

• For every MU-subcategory K ⊆ MConts we define
σK ⊆ MConts, the closure of K under limits of K-sequences,
limit-factorizing maps, and local closure.

• For every full P ⊆ CPols, σP is the full subcategory
consisting of all P-like continua, ⟨P, σP⟩ is a free completion,
and P is a Fraïssé category, and so the Fraïssé limit exists, if
and only if P has the amalgamation property.

• By a result of Russo (1979) there is no cofinal object in σP
unless P ⊆ {∗, I, S}.

• It turns out σP has a Fraïssé limit if and only if P ⊆ {∗, I}
(and the limit is P or ∗), and it has a cofinal object if and only
if P ⊆ {∗, I,S} (and the cofinal object is the universal
pseudo-solenoid PΠ if S ∈ P).
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The pseudo-arc case

• I has AP (mountain-climbing theorem), and so there is a
Fraïssé limit of ⟨I, σI⟩.

• Since there are arbitrarily crooked I-maps, and a Fraïssé
sequence absorbs them, every Fraïssé sequence is a crooked
sequence.

• Hence, the Fraïssé limit is a hereditarily indecomposable
arc-like continuum, and so P by Bing’s theorem.

Theorem (somewhat folklore)

For every I-map g and every ε > 0 there is δ > 0 such that for
every δ-crooked f ∈ I there is h ∈ I with f ≈ε g ◦ h.

• So on the other hand, every crooked I-sequence is Fraïssé,
every hereditarily indecomposable arc-like continuum is a
Fraïssé limit, and Bing’s theorem follows by uniqueness of
Fraïssé limits.
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The pseudo-arc case

Together, we obtain:

Theorem
The pseudo-arc P is characterized (up to a homeomorphism) by
any of the following conditions.

1 P is a hereditarily indecomposable arc-like continuum.
2 P is a homogeneous object in σI, i.e. for every continuous

surjections f , g : P → Y onto an arc-like continuum and ε > 0
there is a homeomorphism h : P → P such that f ≈ε g ◦ h.

3 P is a homogeneous object in ⟨I, σI⟩ (as above with Y = I).
4 P is a projective object in σI, i.e. for every continuous

surjections f : P → Y and g : Y → X between arc-like
continua and ε > 0 there is a continuous surjection h : P → X
such that f ≈ε g ◦ h.

5 P is a projective object in ⟨I, σI⟩ (as above with X = Y = I).
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The pseudo-solenoid case

• Let S denote the MU-category of all continuous surjections on
the unit circle S. Then σS is the MU-category of all circle-like
continua, and ⟨S, σS⟩ is a free completion.

• However, it is known that S does not have AP, and so there is
no Fraïssé limit.

• Recall that every continuous map f : S → S has a degree
deg(f ) ∈ Z and that deg : S → Z is a functor.

• Let Π denote the set of all primes, let P ⊆ Π, and let SP ⊆ S
consist of maps f with deg(f ) ̸= 0 whose all prime divisors are
in P.

• It follows from results by Rogers (1970) that every SP has AP.
• We have proved that ⟨SP , σSP⟩ is a free completion.
• Hence, every ⟨SP , σSP⟩ has a Fraïssé limit PP .
• But what is PP and what is σSP (it is not full in σS)?
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The pseudo-solenoid case
• Let N denote the monoid of supernatural numbers

s : Π → N ∪ {∞} (representing
∏

p∈Π ps(p)) together with 0.

• We put s ∼ s ′ if {p ∈ Π : s(p) ̸= s(p′)} is finite and
s−1(∞) = (s ′)−1(∞). We call members of N/∼ types.

• For S,S ′ ∈ N/∼, a T -map S → S ′ is a function
S ∪ {0} → S ′ ∪ {0} that is the multiplication by some t ∈ N.

• Let T denote the category of types and T -maps. There is a
contravariant type functor T : σS → T extending the degree.

• By Fearnley (1972) there is exactly one hereditarily
indecomposable circle-like continuum of each type S, the
S-adic pseudo-solenoid.

• These include the pseudo-arc (type 0), the pseudo-circle
(type 1), the universal pseudo-solenoid (type Π∞), and more
generally P-adic pseudo-solenoids (type P∞ for P ⊆ Π).
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The pseudo-solenoid case

• By absorption, the Fraïssé sequence in SP is of type P∞ and
is crooked since there are arbitrarily crooked continuous
surjections S → S of any degree.

• Hence, the Fraïssé limit PP of ⟨SP , σSP⟩ is the P-adic
pseudo-solenoid by the uniqueness result by Fearnley (1972).

• On the other hand, it follows from a theorem by Kawamura
(1989) that an SP -sequence of type P∞ is crooked if and only
if it is Fraïssé in SP .

• Hence, the uniqueness of the P-adic pseudo-solenoid follows
from the uniqueness of the Fraïssé limit.
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The pseudo-solenoid case
Together, we obtain:

Theorem
The P-adic pseudo-solenoid PP is characterized by any of the
following conditions.

1 PP is a hereditarily indecomposable circle-like continuum of
type P∞.

2 PP is a homogeneous object in σSP (or ⟨SP , σSP⟩).
3 PP is a projective object in σSP (or ⟨SP , σSP⟩).

• Every σS-map PΠ → Y onto a non-planar circle-like
continuum is a σSΠ-map, and so homogeneity applies.

• As a by-product we easily obtain the known facts that PΠ
continuously maps onto every circle-like continuum and that
every continuous surjection PΠ → PΠ is a near-homeomorphism.

Thank you.
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