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A few results on partition spectra
Limitations on the Borel spectrum

Partitioning the real line into Borel sets

It is easy to see that R can be partitioned into n Borel sets for any
finite n > 0 . . .

or into ℵ0 Borel sets . . .

or into c Borel sets (for example, just partition it into singletons).

Though it is not quite as easy to see, there is also a partition of R
into ℵ1 Borel sets (regardless of whether c = ℵ1):

Theorem (Hausdorff, 1936)

There is a partition of R into ℵ1 nonempty Fσδ sets.
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What about sets of lower complexity?

Is it possible to partition R into ℵ1 sets of even lower complexity?

Theorem (Fremlin and Shelah, 1979)

The following are equivalent:
1 There is a partition of R into ℵ1 nonempty Gδ sets.
2 There is a partition of R into ℵ1 nonempty Gδσ sets.
3 R can be covered with ℵ1 meager sets, i.e., cov(M) = ℵ1.

Proof that (3)⇒ (1).

Suppose {Fα : α < ω1} enumerates a covering of R with ℵ1 closed
nowhere dense sets. For each α, let Gα = Fα \

⋃
ξ<α Fξ. Then

{Gα : α < ω1} \ {∅} is a partition of R into ℵ1 Gδ sets.
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What about sets of even lower complexity?

Is it possible to partition R into ℵ1 sets of even lower complexity?

CH implies there is a partition of R into ℵ1 closed sets (singletons).

Theorem (Sierpiński, 1918)

Any partition of R into ≥2 closed sets has size at least cov(M).

Theorem (Stern, 1977)

It is consistent with the failure of CH that R can be partitioned
into ℵ1 closed sets.

Theorem (Miller, 1980)

There is a partition of R into ℵ1 closed sets if and only if there is a
partition into ℵ1 Fσ sets. Furthermore, the existence of such a
partition is not implied by cov(M) = ℵ1.
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A few results on partition spectra
Limitations on the Borel spectrum

The starting point for me

To summarize what we’ve seen so far, all of the following
implications hold in ZFC, and none of them reverses:

The Continuum Hypothesis

⇒ There is a partition of R into ℵ1 closed / Fσ sets

⇒ There is a partition of R into ℵ1 Gδ / Gδσ sets

⇒ There is a partition of R into ℵ1 Fσδ sets

and furthermore, this last assertion is a theorem of ZFC.

Question:
What about partitions of R into more than ℵ1 Borel sets?
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What’s different about bigger κ?
Recall from earlier the easy part of the Fremlin-Shelah theorem:
If cov(M) = ℵ1, there is a partition of R into ℵ1 Gδ sets.

Proof.
Suppose {Fα : α < ω1} enumerates a covering of R with ℵ1 closed
nowhere dense sets. For each α, let Gα = Fα \

⋃
ξ<α Fξ. Then

{Gα : α < ω1} \ {∅} is a partition of R into ℵ1 Gδ sets.

This proof simply doesn’t work for κ > ℵ1.

Open question:

Does cov(M) = κ imply there is a partition of R into κ Gδ sets?

Also, Hausdorff’s result does not extend to cardinals >ℵ1.

Theorem (Miller, 1989)

Consistently, c > ℵ2 and R cannot be partitioned into ℵ2 Borel sets.
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The partition spectrum of a pointclass

Question:
For what uncountable cardinals κ is there a partition of R into
precisely κ Borel sets? What does the set of all such κ look like?
What about Gδ sets or closed sets, or other pointclasses of sets?

For a pointclass Γ of sets, define the Γ partition spectrum as

sp(Γ) = {κ > ℵ0 : there is a partition of R into κ sets in Γ}.

Proposition

For many “reasonable” pointclasses Γ (e.g., closed, Borel),
sp(Γ) = {κ > ℵ0 : there is a partition of X into κ sets in Γ}

for any uncountable Polish space X .

We know that ℵ1, c ∈ sp(Borel), and it is consistent with ¬CH to
have ℵ2 /∈ sp(Borel). Can anything else be said?

Will Brian Partitioning the real line into Borel sets



A few results on partition spectra
Limitations on the Borel spectrum

The partition spectrum of a pointclass

Question:
For what uncountable cardinals κ is there a partition of R into
precisely κ Borel sets? What does the set of all such κ look like?
What about Gδ sets or closed sets, or other pointclasses of sets?

For a pointclass Γ of sets, define the Γ partition spectrum as

sp(Γ) = {κ > ℵ0 : there is a partition of R into κ sets in Γ}.

Proposition

For many “reasonable” pointclasses Γ (e.g., closed, Borel),
sp(Γ) = {κ > ℵ0 : there is a partition of X into κ sets in Γ}

for any uncountable Polish space X .

We know that ℵ1, c ∈ sp(Borel), and it is consistent with ¬CH to
have ℵ2 /∈ sp(Borel). Can anything else be said?

Will Brian Partitioning the real line into Borel sets



A few results on partition spectra
Limitations on the Borel spectrum

The partition spectrum of a pointclass

Question:
For what uncountable cardinals κ is there a partition of R into
precisely κ Borel sets? What does the set of all such κ look like?
What about Gδ sets or closed sets, or other pointclasses of sets?

For a pointclass Γ of sets, define the Γ partition spectrum as

sp(Γ) = {κ > ℵ0 : there is a partition of R into κ sets in Γ}.

Proposition

For many “reasonable” pointclasses Γ (e.g., closed, Borel),
sp(Γ) = {κ > ℵ0 : there is a partition of X into κ sets in Γ}

for any uncountable Polish space X .

We know that ℵ1, c ∈ sp(Borel), and it is consistent with ¬CH to
have ℵ2 /∈ sp(Borel). Can anything else be said?

Will Brian Partitioning the real line into Borel sets



A few results on partition spectra
Limitations on the Borel spectrum

The partition spectrum of a pointclass

Question:
For what uncountable cardinals κ is there a partition of R into
precisely κ Borel sets? What does the set of all such κ look like?
What about Gδ sets or closed sets, or other pointclasses of sets?

For a pointclass Γ of sets, define the Γ partition spectrum as

sp(Γ) = {κ > ℵ0 : there is a partition of R into κ sets in Γ}.

Proposition

For many “reasonable” pointclasses Γ (e.g., closed, Borel),
sp(Γ) = {κ > ℵ0 : there is a partition of X into κ sets in Γ}

for any uncountable Polish space X .

We know that ℵ1, c ∈ sp(Borel), and it is consistent with ¬CH to
have ℵ2 /∈ sp(Borel). Can anything else be said?

Will Brian Partitioning the real line into Borel sets



A few results on partition spectra
Limitations on the Borel spectrum

The main theorem

Theorem (B., 2022)

Let C be a set of uncountable cardinals such that

◦ min(C ) is regular,
◦ |C | < min(C ),
◦ C has a maximum with cf(max(C )) > ω,
◦ C is closed under singular limits, and
◦ if λ is singular and λ ∈ C , then λ+ ∈ C .

Assuming GCH holds up to max(C ), there is a ccc forcing
extension in which C = sp(closed), and furthermore, if
min(C ) < µ /∈ C , then µ /∈ sp(Borel).

The proof utilizes an “isomorphism-of-names” argument in order to
exclude cardinals µ /∈ C from sp(Borel).
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◦ |C | < min(C ),
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◦ if λ is singular and λ ∈ C , then λ+ ∈ C .
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Some corollaries

Corollary

Given any A ⊆ ω \ {0}, there is a forcing extension in which
sp(closed) = {ℵn : n ∈ A} ∪ {ℵω,ℵω+1}.

Corollary
Let C be a countable set of uncountable cardinals such that
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A few results on partition spectra
Limitations on the Borel spectrum

The structure of sp(Borel)

This theorem/corollary can be used to produce models in which
sp(Borel) has the following features:

1 sp(Borel) is countable,
2 min(sp(Borel)) = ℵ1,
3 sp(Borel) has a maximum with uncountable cofinality,
4 sp(Borel) is closed under singular limits, and
5 if λ is singular and λ ∈ sp(Borel), then λ+ ∈ sp(Borel).

Question
Which of these items represent essential features of sp(Borel), and
which just represent limitations of the techniques used to prove the
theorems on the previous slides?
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A few results on partition spectra
Limitations on the Borel spectrum

sp(Borel) need not be countable

1 sp(Borel) is countable

The first item on our list simply represents a limitation of our proof
technique:

Theorem (B. & Miller, 2015)

For any cardinal κ ≥ c with uncountable cofinality, there is a ccc
forcing extension in which sp(Borel) = [ℵ1, κ].

2 min(sp(Borel)) = ℵ1

3 sp(Borel) has a maximum with uncountable cofinality
The second and third items on our list are necessary features of
sp(Borel), because ℵ1 ∈ sp(Borel) by Hausdorff’s theorem, and
c = max(sp(Borel)) has uncountable cofinality.
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A few results on partition spectra
Limitations on the Borel spectrum

Singular limits

4 sp(Borel) is closed under singular limits

The fourth item on our list is also a necessary feature of sp(Borel):

Proposition

sp(Borel) is closed under singular limits.

Proof.
Suppose λ is a limit of cardinals 〈µα : α < κ〉 in sp(Borel), with
κ = cf(λ) < λ. Pick µγ ≥ κ, and fix a partition P of ωω into µγ
Borel sets. Without loss of generality, assume all members of this
partition are uncountable.
Fix κ sets 〈Bα : α < κ〉 in this partition. Each Bα contains an
uncountable Polish space Kα. Partition Kα into µα Borel sets, and
then replace each Bα in P with these µα sets and Bα \ Kα.
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A few results on partition spectra
Limitations on the Borel spectrum

Successors of singular cardinals

5 if λ is singular and λ ∈ sp(Borel), then λ+ ∈ sp(Borel)

The last item on our list seems a bit more subtle. The following
result provides a partial answer to the question of whether this
represents a necessary feature of sp(Borel):

Theorem (B.)

Suppose that 0† does not exist. If λ is a singular cardinal with
cf(λ) = ω and λ ∈ sp(Borel), then λ+ ∈ sp(Borel).

Open question:

Is it consistent (relative to some large cardinal hypothesis) that
there is a singular cardinal λ with λ ∈ sp(Borel) but λ+ /∈ sp(Borel)?
In particular, is it consistent to have a partition of R into ℵω Borel
sets, but not ℵω+1?
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A few results on partition spectra
Limitations on the Borel spectrum

Partitioning a space into Polish spaces

For any space X , define

par(X ) = min{|P| : P is a partition of X into Polish spaces}.

Note that par(X ) is well defined and ≤|X | for every X , because we
may partition X into singletons (which are Polish).

To prove the partial result on the previous slide, we will be
particularly interested in par(X ) for spaces of the form X = Dω,
where D is discrete.

For the remainder of the talk, all ordinals are considered to carry
the discrete topology.
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A few results on partition spectra
Limitations on the Borel spectrum

What happens below ℵω

Lemma (B. & Miller, 2015)

If 0 < n < ω, then par(ωωn ) = ℵn.

Proof sketch.
We will just show one direction: that par(ωωn ) ≤ ℵn. The proof is
by induction on n. Assume this holds for some particular n. Let

Xβ = βn \
⋃
α<β α

n

for all ordinals ωn ≤ β < ωn+1. If cf(β) > ω then Xβ = ∅, and if
cf(β) ≤ ω then it is not too difficult to see that Xβ is a Gδ set
(hence completely metrizable), and is in fact homeomorphic to ωωn .
Thus ωωn+1 can be partitioned into ℵn+1 copies of ωωn , and applying
the induction hypothesis, we can obtain a partition of ωωn+1 into
ℵn+1 Polish spaces.
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What happens below ℵω

Theorem (B. & Miller, 2015)

Let 0 < n < ω. Then there is a continuous bijection ωωn → ωω

if and only if ℵn ∈ sp(Borel).

Proof sketch.
⇐: Suppose P is a partition of ωω into ℵn Borel sets. This implies
that there is a continuous bijection f : ωn × ωω → ωω. But then
the map f ω (which acts like f on every coordinate) is a continuous
bijection from (ωn × ωω)ω ≈ ωωn onto (ωω)ω ≈ ωω.

⇒: Let P be a partition of ωωn into ℵn Polish spaces, and suppose
f : ωωn → ωω is a continuous bijection. Then {f [X ] : X ∈ P} is a
partition of ωω into ℵn Borel sets.
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What happens at ℵω?

Lemma (B., 2022)

If κ is an uncountable cardinal, then par(κω) ≥ cf([κ]ω,⊆). In
particular, par(ωωω) ≥ ℵω+1.

If 0† does not exist, then par(κω) = cf([κ]ω,⊆) = κ+ for every
κ > ℵ0 with cf(κ) = ω. In particular, if 0† does not exist then
par(ωωω) = ℵω+1.

The proof essentially uses “L-like” combinatorial principles to push
the inductive arguments for the ωn’s past singular cardinals.

Theorem (B.)

Suppose that 0† does not exist. If λ is a singular cardinal with
cf(λ) = ω and λ ∈ sp(Borel), then λ+ ∈ sp(Borel).
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is a partition Q of ωωω into ℵω+1 Polish spaces. But then, because
f ω is a continuous bijection, {f ω[X ] : X ∈ Q} is a partition of ωω
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How to ruin this argument using large cardinals

Note that the argument on the previous slide really just uses
“0† does not exist” to ensure that par(ωωω) = ℵω+1.

It is consistent,
in two different ways, for this equality to fail:

Recall from a previous slide that par(ωωω) ≥ cf([ωω]ω,⊆). By
work of Gitik, it is consistent relative to a measurable cardinal
κ of Mitchell order κ++ that cf([ωω]ω,⊆) > ℵω+1.
Beginning with GCH plus the generalized Chang Conjecture
(ℵω+1,ℵω)→ (ℵ1,ℵ0), which is consistent relative to a huge
cardinal, and then adding >ℵω+1 Cohen reals results in a
model in which cf([ωω]ω,⊆) = ℵω+1 < par(ωωω).
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A few more questions

Open question:

Is it consistent that ℵ2 ∈ sp(Borel) but ℵ2 /∈ sp(closed)?

Open question:

Is it consistent that sp(Borel) 6= sp(OD(R))?

Open question:
Given some α with 0 < α < ω1, is it consistent that
sp(Π0

α) 6= sp(Π0
α+1)?

Currently we know the answer only for α = 1 and 2, and the
answer is yes in both cases.

Open question:

Is sp(Borel) closed under regular limits?
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The end

Thank you for listening
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