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disorder attributed to T.

- for a topological space (X, ), T is continuous; produces
topological entropy htop(T).
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The entropy was invented by Rudolf Clausius in Physiscs in 1865
¢ Information Theory — Claude Shannon in 1948

e Ergodic Theory — Kolmogorov and Sinai in 1958

e Topological Dynamics — Adler, Konheim, McAndrew in 1965
e Algebraical Dynamics — Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation T : X — X is
a non-negative real number or oo measuring the randomness or
disorder attributed to T.

- for a topological space (X, ), T is continuous; produces
topological entropy htop(T).

- for an abelian group (X, +), T is a homomorphism; produces
algebraic entropy h,ig(T).

In both cases we have a self-map T : X — X that defines a left

action N A X of the monoid (N,+4) on X in the standard way
A(n)=T".
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The entropy was invented by Rudolf Clausius in Physiscs in 1865
¢ Information Theory — Claude Shannon in 1948

e Ergodic Theory — Kolmogorov and Sinai in 1958

e Topological Dynamics — Adler, Konheim, McAndrew in 1965
e Algebraical Dynamics — Weiss and Peters in 1976.

In each setting the entropy h(T) of a transformation T : X — X is
a non-negative real number or oo measuring the randomness or
disorder attributed to T.

- for a topological space (X, ), T is continuous; produces
topological entropy htop(T).

- for an abelian group (X, +), T is a homomorphism; produces
algebraic entropy h,ig(T).

In both cases we have a self-map T : X — X that defines a left

action N A X of the monoid (N,+4) on X in the standard way
A(n) = T". Later the definition of entropy was extended to actions

A . .
S ~ X of amenable monoids S on compact space X or a discrete
group X (definitions follow).
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M. Weiss proved in 1975 that an endomorphism f : K — K of a
totally disconnected compact Abelian group K satisfies
hiop(F) = hag ("), where f*: K™ — K is the Pontryagin dual of f.

Let us call Bridge Theorem this remarkable equality.
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metrizable compact Abelian groups (Z-actions). Giordano Bruno
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M. Weiss proved in 1975 that an endomorphism f : K — K of a
totally disconnected compact Abelian group K satisfies
hiop(F) = hag ("), where f*: K™ — K is the Pontryagin dual of f.

Let us call Bridge Theorem this remarkable equality.

Peters 1979 verified the Bridge Theorem for automorphisms of
metrizable compact Abelian groups (Z-actions). Giordano Bruno
and DD [2010], verified the Bridge Theorem for all continuous
endomorphisms of arbitrary compact Abelian groups (N-actions).

This talk is dedicated to the Bridge Theorem and its applications.

Theorem (Bridge Theorem)

If S is a cancellative right amenable monoid, K a compact Abelian
group and K A S a right S-action, then heop(p) = harg(p™).

Proved by H.Li [2012] for S a countable amenable group and K
compact metrizable and some sofic group action by Liang [2019].
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Amenability and the left Ore condition

A right Fglner net for a monoid S is a net {F;}ic in

Piin(S) = [S]< \ {0} such that lim;¢, |F|7E\|F‘ =0 for every s € S.
We say that a cancellative monoid S is right amenable if it admits
a right Fglner net. (Amenability can be defined using finitely

additive right invariant measures.)
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Piin(S) = [S]< \ {0} such that lim;¢, |F|7E\|F‘ =0 for every s € S.
We say that a cancellative monoid S is right amenable if it admits
a right Fglner net. (Amenability can be defined using finitely

additive right invariant measures.)

(N, +) is amenable, witnessed by the Fglner sequence
F,=1{0,1,...,n— 1}. Every commutative monoid is amenable.
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Amenability and the left Ore condition

A right Fglner net for a monoid S is a net {F;}ic in

Piin(S) = [S]< \ {0} such that lim;¢, |F|7E\|F‘ =0 for every s € S.
We say that a cancellative monoid S is right amenable if it admits
a right Fglner net. (Amenability can be defined using finitely

additive right invariant measures.)

(N, +) is amenable, witnessed by the Fglner sequence
F,=1{0,1,...,n— 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements

s, t € S, the intersection Ss N St # () is not trivial.

Clearly, S is left Ore iff (S, <) is directed, with the partial preorder
defined by s < s’ iff s’ = ts for some t € S.
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Amenability and the left Ore condition

A right Fglner net for a monoid S is a net {F;}ic in

Piin(S) = [S]< \ {0} such that lim;¢, |F|7E\|F‘ =0 for every s € S.
We say that a cancellative monoid S is right amenable if it admits
a right Fglner net. (Amenability can be defined using finitely

additive right invariant measures.)

(N, +) is amenable, witnessed by the Fglner sequence
F,=1{0,1,...,n— 1}. Every commutative monoid is amenable.

A cancellative monoid S is left Ore, if: for any pair of elements

s, t € S, the intersection Ss N St # () is not trivial.

Clearly, S is left Ore iff (S, <) is directed, with the partial preorder
defined by s < s’ iff s’ = ts for some t € S.

A cancellative and right amenable monoid S is always left Ore, and
therefore, S can be embedded in a group G := S™1S that we call
group of left fractions of S, then G is amenable.
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The category 2t of normed monoids

An objects of M is a normed monoid, i.e., a pair (M, v) where
(M, +) is a commutative monoid and v: M — Rxg is a function.
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The category 2t of normed monoids

An objects of M is a normed monoid, i.e., a pair (M, v) where
(M, +) is a commutative monoid and v: M — Rxg is a function.
A morphism ¢: (My,vi) = (Ma, v2) in 9 is a contracting monoid
homomorphism ¢: My — Ma (i.e., va(d(m)) < vi(m) for all

m € My). So, ¢ is an isomorphism in O if it is a monoid
isomorphism and va(¢(m)) = vi(m) for all m € M;.
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The category 2t of normed monoids

An objects of M is a normed monoid, i.e., a pair (M, v) where
(M, +) is a commutative monoid and v: M — Rxg is a function.
A morphism ¢: (My,vi) = (Ma, v2) in 9 is a contracting monoid
homomorphism ¢: My — Ma (i.e., va(d(m)) < vi(m) for all
m € My). So, ¢ is an isomorphism in O if it is a monoid
isomorphism and va(¢(m)) = vi(m) for all m € M;.
The norm v of normed monoid (M, v) is said to be:
@ monotone provided v(x) < v(x + y), for all x, y € M;
@ sub-additive provided v(x + y) < v(x) + v(y), for all x,

y € M.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



The category 2t of normed monoids

An objects of M is a normed monoid, i.e., a pair (M, v) where
(M, +) is a commutative monoid and v: M — Rxg is a function.
A morphism ¢: (My,vi) = (Ma, v2) in 9 is a contracting monoid
homomorphism ¢: My — Ma (i.e., va(d(m)) < vi(m) for all
m € My). So, ¢ is an isomorphism in O if it is a monoid
isomorphism and va(¢(m)) = vi(m) for all m € M;.
The norm v of normed monoid (M, v) is said to be:
@ monotone provided v(x) < v(x + y), for all x, y € M;
@ sub-additive provided v(x + y) < v(x) + v(y), for all x,

y € M.

The entropies h,je and hi,), are based on the following normed
monoids (other entropies can be obtained using other normed
monoids).
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Let X be a discrete Abelian group and F(X) be the family of all
finite symmetric subsets of X containing 0. The pair (§(X),+) is
a commutative monoid (as F1 + F» = F> + F; for Fi, F> € §(X)),
with norm defined by vz(F) = log |F|, for all F € F(X). The norm
vz is both monotone and sub-additive.
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Let X be a discrete Abelian group and F(X) be the family of all
finite symmetric subsets of X containing 0. The pair (§(X),+) is
a commutative monoid (as F1 + F» = F> + F; for Fi, F> € §(X)),
with norm defined by vz(F) = log |F|, for all F € F(X). The norm
vz is both monotone and sub-additive.

Example (2)

@ Let K be a compact space and cov(K) the family of its open
covers. For U, Vecov(K) letU VV={UNV :Ucl,VeV}.
Then (cov(K), V) is a commutative monoid with a monotone
and sub-additive norm given by vy (U) = log N(U) for all for
all U € cov(K), where N(U)=min{|V| : cov(K) >V C U}.
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Example (1)

Let X be a discrete Abelian group and F(X) be the family of all
finite symmetric subsets of X containing 0. The pair (§(X),+) is
a commutative monoid (as F1 + F» = F> + F; for Fi, F> € §(X)),
with norm defined by vz(F) = log |F|, for all F € F(X). The norm
vz is both monotone and sub-additive.

Example (2)

@ Let K be a compact space and cov(K) the family of its open
covers. For U, Vecov(K) letU VV={UNV :Ucl,VeV}.
Then (cov(K), V) is a commutative monoid with a monotone
and sub-additive norm given by vy (U) = log N(U) for all for
all U € cov(K), where N(U)=min{|V| : cov(K) >V C U}.

@ Let K be a compact group, p its Haar measure K and $(K)
be the family of all symmetric compact neighborhoods of 0 in
K. Then the pair (L(K),N) is a commutative monoid, with
norm vy defined by vy (U) = — log u(U), for each U € LU(K).
Clearly, v5( is monotone, but not subadditive in general.
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Actions and trajectories in 91

Let G be a fixed infinite cancellative right amenable monoid and
M = ((M,+), v) a normed monoid. A G-action G ~ M on M is a
monoid homomorphism a: G — End(M) (where End(M) is the
monoid of all endomorphisms of normed monoids M — M). For
xeM and F={f1,...,fc} CG, define the F-trajectory of x by

Tr(a,x) = ag(x) + ... + ag(x).
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Actions and trajectories in 91

Let G be a fixed infinite cancellative right amenable monoid and
M = ((M,+), v) a normed monoid. A G-action G ~ M on M is a
monoid homomorphism a: G — End(M) (where End(M) is the
monoid of all endomorphisms of normed monoids M — M). For
xeM and F={f1,...,fc} CG, define the F-trajectory of x by

Tr(a,x) = ag(x) + ... + ag(x).

Two left G-actions G A M; and G ~ M; on the normed monoids
(M1, v1) and (Ma, v») are conjugated if there exists a
G-equivariant isomorphism of normed monoids f: M; — M, that
is, fo(a1)g = (ag)gof forall g € G.
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Actions and trajectories in 91

Let G be a fixed infinite cancellative right amenable monoid and
M = ((M,+), v) a normed monoid. A G-action G ~ M on M is a
monoid homomorphism a: G — End(M) (where End(M) is the
monoid of all endomorphisms of normed monoids M — M). For
xeM and F={f1,...,fc} CG, define the F-trajectory of x by

Tr(a,x) = ag(x) + ... + ag(x).

Two left G-actions G A M; and G ~ M; on the normed monoids
(M1, v1) and (Ma, v») are conjugated if there exists a
G-equivariant isomorphism of normed monoids f: M; — M, that
is, fo(a1)g = (ag)gof forall g € G.

One can introduce two weaker than conjugation notions of
“equivalence” between actions on normed monoids:
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Definition
For G-actions G ™~ My and G ~ My, where M; = (Mi,vi) e M

for i =1,2. we say that:
1. ap dominates «a if, for each x € My, there exists y € M, such

that, vi(Tr(a1, x)) < vo( Te(ag, y)) for all F € Pg,(G),
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Definition

For G-actions G ™~ My and G ~ My, where M; = (Mi,vi) e M
for i =1,2. we say that:

1. ap dominates «a if, for each x € My, there exists y € M, such
that, vi(Tr(a1, x)) < vo( Te(ag, y)) for all F € Pg,(G),

2. ap asymptotically dominates «; if, for every right Fglner net
s = {F;}ics for S and for every x € My, there exist a sequence
{¥n}nen in Mz and functions f,: R>g — R>0, n € N, such that:
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Definition

For G-actions G ™~ My and G ~ My, where M; = (Mi,vi) e M

for i =1,2. we say that:

1. ap dominates «a if, for each x € My, there exists y € M, such

that, vi(Tr(a1, x)) < vo( Te(ag, y)) for all F € Pg,(G),

2. ap asymptotically dominates «; if, for every right Fglner net

s = {F;}ics for S and for every x € My, there exist a sequence

{¥n}nen in Mz and functions f,: R>g — R>0, n € N, such that:
— {fa}nen converges uniformly to id: R>g — R>¢ on every

bounded interval [0, C],
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Definition

For G-actions G ™~ My and G ~ My, where M; = (Mi,vi) e M

for i =1,2. we say that:

1. ap dominates «a if, for each x € My, there exists y € M, such

that, vi(Te(a1, x)) < va( Te(az, y)) for all F € Pgy(G),

2. ap asymptotically dominates «; if, for every right Fglner net

s = {F;}ics for S and for every x € My, there exist a sequence

{¥n}nen in Mz and functions f,: R>g — R>0, n € N, such that:
— {fa}nen converges uniformly to id: R>g — R>¢ on every

bounded interval [0, C],
— there exists j € | such that, for all i > j in / and all n € N,

vi(TF (o, x)) vo( T (a2, yn))
B < (R,
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Definition

For G-actions G ™~ My and G ~ My, where M; = (Mi,vi) e M

for i =1,2. we say that:

1. ap dominates «a if, for each x € My, there exists y € M, such

that, vi(Tr(a1,x)) < vo(Tr(az, y)) for all F € Pga(G),

2. ap asymptotically dominates o if, for every right Fglner net

s = {F;}ics for S and for every x € My, there exist a sequence

{¥n}nen in Mz and functions f,: R>g — R>0, n € N, such that:
— {fa}nen converges uniformly to id: R>g — R>¢ on every

bounded interval [0, C],
— there exists j € | such that, for all i > j in / and all n € N,

vi(TF (o, x)) vo( T (a2, yn))
B < (R,

3. aj is equivalent (resp., asymptotically equivalent) to a if these
two actions dominate (resp., asymptotically dominate) each other.
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Definition

For G-actions G ™~ My and G ~ My, where M; = (Mi,vi) e M

for i =1,2. we say that:

1. ap dominates «a if, for each x € My, there exists y € M, such

that, vi(Tr(a1,x)) < vo(Tr(az, y)) for all F € Pga(G),

2. ap asymptotically dominates o if, for every right Fglner net

s = {F;}ics for S and for every x € My, there exist a sequence

{¥n}nen in Mz and functions f,: R>g — R>0, n € N, such that:
— {fa}nen converges uniformly to id: R>g — R>¢ on every

bounded interval [0, C],
— there exists j € | such that, for all i > j in / and all n € N,

vi(TF (o, x)) vo( T (a2, yn))
B < (R,

3. aj is equivalent (resp., asymptotically equivalent) to a if these
two actions dominate (resp., asymptotically dominate) each other.

conjugated — equivalent — asymptotically equivalent
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The normed monoid entropy
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The normed monoid entropy

Definition

Let M = (M, v) be a normed monoid with v monotone, G A M a
left G-action. Then for a right Fglner net s = {F;};c; of G the
s-entropy of « at me M is

7— V(TF(a, m))

H =i
(0,5, m) = lim =

The s-entropy of a is h(\,s) = sup,,cpy H(A, s, m).
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The normed monoid entropy

Definition

Let M = (M, v) be a normed monoid with v monotone, G A M a
left G-action. Then for a right Fglner net s = {F;};c; of G the
s-entropy of « at m € M is

7— V(TF(a, m))

H =i
(0,5, m) = lim =

The s-entropy of a is h(\,s) = sup,,cpy H(A, s, m).

y

If v is also sub-additive, then H(«,s, m) is a limit, independent on
the choice of s (which measures the growth of Tr (a, m)).
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The normed monoid entropy

Definition

Let M = (M, v) be a normed monoid with v monotone, G A M a
left G-action. Then for a right Fglner net s = {F;};c; of G the
s-entropy of « at m € M is

7 V(TF (o, m))

H =i
(0,5, m) = lim =

The s-entropy of a is h(\,s) = sup,,cpy H(A, s, m).

y

If v is also sub-additive, then H(«,s, m) is a limit, independent on
the choice of s (which measures the growth of Tr (a, m)).

On the normed monoids in Examples (1) and (2), one has the

following G-actions induced by a left G-action G A X and by a
right G-action K AG, respectively on a discrete Abelian group X
and on a compact space K.
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Example (topological entropy)

Let K be a compact space and K A G a right G-action.
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Example (topological entropy)

Let K be a compact space and K A G a right G-action.
Define the left G-actions:

Pcov

@ G 'R cov(K), by (peov)g(U) = pgt(U), for every g € G;
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Example (topological entropy)

Let K be a compact space and K A G a right G-action.
Define the left G-actions:

@ G'& cov(K), by (peov)g(U) = pgt(U), for every g € G;
@ G A U(K), by (pu)g(U) = p;1(U), for every g € G.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Example (topological entropy)

Let K be a compact space and K A G a right G-action.
Define the left G-actions:

@ G'& cov(K), by (peov)g(U) = pgt(U), for every g € G;

@ G A U(K), by (pu)g(U) = p;1(U), for every g € G.
For any F € P5n(G), U € cov(K) and U € (K),

TF(,OCOV> \/p Z/{) and TF(,OLI’ mp_l(U)
gEF geF
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Example (topological entropy)

Let K be a compact space and K A G a right G-action.
Define the left G-actions:

@ G'& cov(K), by (peov)g(U) = pgt(U), for every g € G;
@ G A U(K), by (pu)g(U) = p;1(U), for every g € G.
For any F € P5n(G), U € cov(K) and U € (K),

TF(pCOV,L{):\/pg_l(U) and Tk (py, U)= ﬂpgl(U)
gEeF geF

In particular, for any right Fglner net s for G,
H(pcov,8,U) = Hiop(p,U) and h(p,s) = hiop(p) is the topological
entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].
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Example (topological entropy)

Let K be a compact space and K A G a right G-action.
Define the left G-actions:

@ G'& cov(K), by (peov)g(U) = pgt(U), for every g € G;

@ G A U(K), by (pu)g(U) = p;1(U), for every g € G.
For any F € P5n(G), U € cov(K) and U € (K),

TF(pCOV,L{):\/pg_l(U) and Tk (py, U)= ﬂpgl(U)
gEeF geF

In particular, for any right Fglner net s for G,
H(pcov,8,U) = Hiop(p,U) and h(p,s) = hiop(p) is the topological
entropy [Ceccherini-Silberstein, M. Coornaert, F. Krieger 2014].

On the other hand, when K is a (locally) compact group, h(py, s)
coincides with Bowen's entropy hgowen With respect to s.
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Example (algebraic entropy)

Let X be a discrete Abelian group and G A X a left G-action.
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Example (algebraic entropy)

Let X be a discrete Abelian group and G A X a left G-action.

The left G-action G 3 §(X) is defined by (A\z)g(F) = Ag(F) for
g € G, F € Psy(G). Then for any F € Pg,(G) and E € F(X),

Te(A5E) = ) Ag(

geF

is the A\z-trajectory of L with respect to F.
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Example (algebraic entropy)

Let X be a discrete Abelian group and G A X a left G-action.

The left G-action G 3 §(X) is defined by (A\z)g(F) = Ag(F) for
g € G, F € Psy(G). Then for any F € Pg,(G) and E € F(X),

Te(A5E) = ) Ag(

geF

is the A\z-trajectory of L with respect to F.

The limit H.io (X, E) :== H()g, 5, E) (for some right Fglner net s for
G) is the algebraic entropy of A w.r.t. E and hye(A) := h(Ag,s) -
the algebraic entropy of A, as defined by Fornasiero, Giordano
Bruno, DD [2019]
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Example (algebraic entropy)

Let X be a discrete Abelian group and G A X a left G-action.

The left G-action G 3 §(X) is defined by (A\z)g(F) = Ag(F) for
g € G, F € Psy(G). Then for any F € Pg,(G) and E € F(X),

Te(A5E) = ) Ag(

geF

is the A\z-trajectory of L with respect to F.

The limit H.io (X, E) :== H()g, 5, E) (for some right Fglner net s for
G) is the algebraic entropy of A w.r.t. E and hye(A) := h(Ag,s) -
the algebraic entropy of A, as defined by Fornasiero, Giordano
Bruno, DD [2019] (for N-actions h,jg was introduced by Giordano
Bruno, DD [2010], for Z-actions it coincides with Peters' entropy
h.1; although his definition cannot be extended to N-actions).
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Invariance of the entropy under asymptotic equivalence
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Invariance of the entropy under asymptotic equivalence

The following lemma plays a key role in the proof of the Bridge
Theorem:

Let My = (My, vi) and My = (My, v») be two normed monoids,
and G A M, G = Mo left G-actions. If oy and o are
asymptotically equivalent, then h(ay,s) = h(ag,s) for every right
Fginer net s for G.
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Invariance of the entropy under asymptotic equivalence

The following lemma plays a key role in the proof of the Bridge
Theorem:

Let My = (My, vi) and My = (My, v») be two normed monoids,
and G A M, G = Mo left G-actions. If oy and o are
asymptotically equivalent, then h(ay,s) = h(ag,s) for every right
Fginer net s for G.

If G is an amenable group and K AGa right linear action on a
compact group K, then G A U(K) and G X cov(K) are
equivalent. So, h(py,s) = h(pcov,s) for every Fglner net s for G.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Invariance of the entropy under asymptotic equivalence

The following lemma plays a key role in the proof of the Bridge
Theorem:

Let My = (My, vi) and My = (My, v») be two normed monoids,
and G A M, G = Mo left G-actions. If oy and o are
asymptotically equivalent, then h(ay,s) = h(ag,s) for every right
Fginer net s for G.

If G is an amenable group and K AGa right linear action on a
compact group K, then G A U(K) and G X cov(K) are
equivalent. So, h(py,s) = h(pcov,s) for every Fglner net s for G.

Since h(py,s) is Bowen's entropy, this gives as a by-product a new
proof of the well known fact that hiop = hpowen in compact groups.
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Adding "salt” from harmonic analysis
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Adding "salt” from harmonic analysis

For an infinite LCA group I let 4(I") be the family of symmetric
compact neighborhoods of 0l and p be a fixed Haar measure.
Our main interest is in the case when I' = X is discrete (so y is the
counting measure) and when ' = K is compact (when there is a
unique Haar measure such that u(K) = 1.
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Adding "salt” from harmonic analysis

For an infinite LCA group I let 4(I") be the family of symmetric
compact neighborhoods of 0l and p be a fixed Haar measure.
Our main interest is in the case when I' = X is discrete (so y is the
counting measure) and when ' = K is compact (when there is a
unique Haar measure such that u(K) = 1.

L1(T') - the space of absolutely integrable functions ¢: I — C
(those having ||#]|1 = [, o [¢(x)|0u(x) < 00), identifying those
that coincide almost everywhere, so that || — || is a norm on L}(I).
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Adding "salt” from harmonic analysis

For an infinite LCA group I let 4(I") be the family of symmetric
compact neighborhoods of 0l and p be a fixed Haar measure.
Our main interest is in the case when I' = X is discrete (so y is the
counting measure) and when ' = K is compact (when there is a
unique Haar measure such that u(K) = 1.

L1(T') - the space of absolutely integrable functions ¢: I — C
(those having ||#]|1 = [, o [¢(x)|0u(x) < 00), identifying those
that coincide almost everywhere, so that || — || is a norm on L}(I).
B(I") — the set of continuous and positive-definite functions on I
(¢: T — C, is positive-definite if 3°7._; ciGid(x;i — x;) € Rxo, for
all n€Nsg, x1,...,x, € and c1,..., ¢, € C).
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Adding "salt” from harmonic analysis

For an infinite LCA group I let 4(I") be the family of symmetric
compact neighborhoods of 0l and p be a fixed Haar measure.
Our main interest is in the case when I' = X is discrete (so y is the
counting measure) and when ' = K is compact (when there is a
unique Haar measure such that u(K) = 1.

L1(T') - the space of absolutely integrable functions ¢: I — C
(those having ||#]|1 = [, o [¢(x)|0u(x) < 00), identifying those
that coincide almost everywhere, so that || — || is a norm on L}(I).
B(I") — the set of continuous and positive-definite functions on I
(¢: T — C, is positive-definite if 3°7._; ciGid(x;i — x;) € Rxo, for
all n€Nsg, x1,...,x, € and c1,..., ¢, € C).

If ¢, ¢ € LY(T) then Jyer 18(y)¥(x = y)[du(y) < oo for almost all
x €T, so the convolutlon
(@) (x) = i P(y)(x — y)ouly)
ye
is defined almost everywhere and ¢ x ¢ € L}(T).
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Algebraic Peters normed monoids

Let  M(M) = {¢ € L}(T)NP(T) : ¢(T) € Rxo} \ {0}
for any LCA group I'.
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Algebraic Peters normed monoids

Let  M(M) = {¢ € L}(T)NP(T) : ¢(T) € Rxo} \ {0}
for any LCA group I'.

For the discrete Abelian group X, the algebraic Peters monoid is
Mag(X) := (M(X), *, x{03)- Define wayg: Maig(X) — Rxo, by

waig(¢) = log(l[¢[[1/#(0)) for ¢ € M(X).
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Algebraic Peters normed monoids

Let  M(M) = {¢ € L}(T)NP(T) : ¢(T) € Rxo} \ {0}
for any LCA group I'.

For the discrete Abelian group X, the algebraic Peters monoid is
Mag(X) := (M(X), *, x{03)- Define wayg: Maig(X) — Rxo, by

waig(¢) = log(l[¢[[1/#(0)) for ¢ € M(X).

This makes sense since |[¢]|1 = > cx ¢(x) > ¢(0) # 0.
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Algebraic Peters normed monoids

Let  M(M) = {¢ € L}(T)NP(T) : ¢(T) € Rxo} \ {0}
for any LCA group I'.

For the discrete Abelian group X, the algebraic Peters monoid is
Mag(X) := (M(X), *, x{03)- Define wayg: Maig(X) — Rxo, by

waig(¢) = log(l[¢[[1/#(0)) for ¢ € M(X).

This makes sense since |[¢]|1 = > cx ¢(x) > ¢(0) # 0.

In the above notation:

@ (Maig(X), Waig) is @ commutative normed monoid;

@ the norm wyye: Myg(X) — R>q is monotone.
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Topological Peters normed monoids

Dually, for a compact Abelian group K, the topological Peters
monoid is Miop(K) = (M(K), -, xk)-
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Topological Peters normed monoids

Dually, for a compact Abelian group K, the topological Peters
monoid is Miop(K) = (M(K), -, xk). Define the norm

Wiop Malg(X) — Rzo,

by waig(¢) = log(¢(0)/l|¢l]1) for ¢ € M(K).
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Topological Peters normed monoids

Dually, for a compact Abelian group K, the topological Peters
monoid is Miop(K) = (M(K), -, xk). Define the norm

Wiop Malg(X) — Rzo,
by Walg(¢) = log(¢(0)/[|¢]|1) for ¢ € M(K). This definition is
>

correct since ¢(0) > ||¢||1 > 0 (being ¢(0) > ¢(x) for every
x € K).
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Topological Peters normed monoids

Dually, for a compact Abelian group K, the topological Peters
monoid is Miop(K) = (M(K), -, xk). Define the norm

Wiop Malg(X) — Rzo,

by Walg(¢) = log(¢(0)/[|¢]|1) for ¢ € M(K). This definition is
correct since ¢(0) > ||¢||1 > 0 (being ¢(0) > ¢(x) for every
x € K).

In the above notation:
@ (Miop(K), Wiop) is @ commutative normed monoid.

@ the norm wip, is monotone.

Next we see that these two normed moinoids are isomorphic when
K = X",
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For a LCA group I the Fourier transform qg: T — Cof ¢eLXN)is
defined by

5(7) = (6% 7)(0) = / S =)u(y) = / S uY).
ye

yer

for v € I
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For a LCA group I the Fourier transform qg: T — Cof ¢eLXN)is
defined by

o) (—y)uly) = / S uY).

yer

5(7) = (6 7)(0) = /

yer

for v € I

Theorem

If X is a discrete abelian group and K = X", then the Fourier
transform

—

(—): Mag(X) = Miop(K), ¢ — QZ

is an isomorphism of normed monoids. Hence, X/{o\} = XK,

Gxth =01 and Wag(d) = Weop(®), for all ¢,1p € Mag(X).
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In the sequel G is an amenable group. For a right linear action
KA Gona compact abelian group K the left action

G'H Miop(K), defined by (ptop)g(d) = ¢opg (¢ € Miop(X),
g € G), is an action by isomorphisms of normed monoids.
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In the sequel G is an amenable group. For a right linear action
KA Gona compact abelian group K the left action

G'H Miop(K), defined by (ptop)g(d) = ¢opg (¢ € Miop(X),
g € G), is an action by isomorphisms of normed monoids.

Similarly, for a discrete abelian group X and left linear action

A )
G ~ X the action
)‘alg

G~ Mag(X), such that  (Aalg)g(®) = o A; T,
for all ¢ € Myg(X) and g € G, is well-defined.
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In the sequel G is an amenable group. For a right linear action
KA Gona compact abelian group K the left action

Ptop

G '~ Miop(K), defined by (prop)g(¢) = ¢opg (¢ € Miop(X),

g € G), is an action by isomorphisms of normed monoids.
Similarly, for a discrete abelian group X and left linear action

A )
G ~ X the action

)‘alg

G~ Mag(X), such that  (Aalg)g(®) = o A; T,
for all ¢ € Myg(X) and g € G, is well-defined.

Proposition (Justin Peters’ equality)

. . A . .
For a left linear action G ~ X on a discrete abelian group X,
. =N .
K = X" and the dual action K "N G the G-actions

)‘alg Ptop

G ~ Myg(X) and G '~ Miop(K) are conjugated via the
isomorphism of normed monoids induced by the Fourier transform

(—): Mag(X) = Miop(K), ¢ = 6.
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In the sequel G is an amenable group. For a right linear action
KA Gona compact abelian group K the left action

G ¥ Miop(K), defined by (prop)g(®) = ¢opg (¢ € Miop(X),
g € G), is an action by isomorphisms of normed monoids.

Similarly, for a discrete abelian group X and left linear action

G A X the action
G Mag(X),  suchthat  (Aug)g(d) = doA;?
for all ¢ € Maie(X) and g € G, is well-defined.

Proposition (Justin Peters’ equality)

. . A . .
For a left linear action G ~ X on a discrete abelian group X,

—AN
K = X" and the dual action K "/~ G the G-actions

alg Ptop

G ~ Myg(X) and G '~ Miop(K) are conjugated via the
/somorph/sm of normed monoids induced by the Fourier transform

(_) alg(X) — MtOP(K) ¢ = ¢ Hence h()\algv ) h(pt()p, )
for every Fglner net s for G.
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The Bridge Theorem for amenable group actions
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The Bridge Theorem for amenable group actions

In the sequel X a discrete Abelian group with a left G-action
GA X, K=X"and KA G, with p= \.
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The Bridge Theorem for amenable group actions

In the sequel X a discrete Abelian group with a left G-action
GA X, K=X"and KA G, with p= \.

Aalg

A
@ GAFX)and G~ M.ig(X) are asymptotically equivalent.
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The Bridge Theorem for amenable group actions

In the sequel X a discrete Abelian group with a left G-action
GA X, K=X"and KA G, with p= \.

Aalg

A
@ GAFX)and G~ M.ig(X) are asymptotically equivalent.

Ptop

@ GAYK)andG'R Miop(K) are asymptotically equivalent.
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The Bridge Theorem for amenable group actions

In the sequel X a discrete Abelian group with a left G-action
GA X, K=X"and KA G, with p= \.

Proposition

A Aa
@ GAFX)and G ~ M.ig(X) are asymptotically equivalent.

Ptop

@ GAYK)andG'R Miop(K) are asymptotically equivalent.

Hence, h(\g,s) = h(Xaig,5) and h(py,s) = h(ptop, 5) for every
Fglner net s for G.
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The Bridge Theorem for amenable group actions

In the sequel X a discrete Abelian group with a left G-action
GA X, K=X"and KA G, with p= \.

Proposition

A Aa
@ GAFX)and G ~ M.ig(X) are asymptotically equivalent.

Ptop

@ GAYK)andG'R Miop(K) are asymptotically equivalent.

Hence, h(\g,s) = h(Xaig,5) and h(py,s) = h(ptop, 5) for every
Fglner net s for G.

Bridge Theorem. hyjs(A\) = hyop(A").
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The Bridge Theorem for amenable group actions

In the sequel X a discrete Abelian group with a left G-action
GA X, K=X"and KA G, with p= \.

A Aa
@ GAFX)and G ~ M.ig(X) are asymptotically equivalent.

Ptop

Q@ GAYUK)and G’ Miop(K) are asymptotically equivalent.
p

Hence, h(\g,s) = h(Xaig,5) and h(py,s) = h(ptop, 5) for every
Fglner net s for G.

Bridge Theorem. hyjs(A\) = hyop(A").

Proof. As h(py(,s)—h(peov,s) for every Fglner net s for G,
combining with the above (black) equalities one can conclude that

J.P.
hnlg()\):h()\f?ag) :h(/\alg:5) = h(ptopas) :h(pﬂaﬁ)ih(pcov:5):htop(p)-
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Reduction to actions on compact spaces by surjective maps
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Reduction to actions on compact spaces by surjective maps

For a right action K A 'S of a cancellative right amenable monoid S on a
compact Hausdorff space K, we build (in 2 steps) its Ore colocalization

K* /~ G, where K* is a compact Hausdorff space and G is the group of
left fractions of S. This construction preserves the topological entropy
and linearity.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Reduction to actions on compact spaces by surjective maps
For a right action K A 'S of a cancellative right amenable monoid S on a
compact Hausdorff space K, we build (in 2 steps) its Ore colocalization

K* /~ G, where K* is a compact Hausdorff space and G is the group of
left fractions of S. This construction preserves the topological entropy
and linearity.

The surjective core of K A S is the closed S-invariant subspace
- €
K = E(p) := N,es pe(K) = K of K.
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Reduction to actions on compact spaces by surjective maps

For a right action K A 'S of a cancellative right amenable monoid S on a
compact Hausdorff space K, we build (in 2 steps) its Ore colocalization

K* /~ G, where K* is a compact Hausdorff space and G is the group of
left fractions of S. This construction preserves the topological entropy
and linearity.

The surjective core of K fp\ S is the closed S-invariant subspace
K= E(p) mtes pf( ) (_> K of K.
The restriction ps := ps [g: K — K is surjective for all s € S.
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Reduction to actions on compact spaces by surjective maps
For a right action K A 'S of a cancellative right amenable monoid S on a
compact Hausdorff space K, we build (in 2 steps) its Ore colocalization

K* /~ G, where K* is a compact Hausdorff space and G is the group of
left fractions of S. This construction preserves the topological entropy
and linearity.

The surjective core of K A S is the closed S-invariant subspace
= €

K = E(p) := N,es pe(K) = K of K.

The restriction ps 1= ps [z: K — K is surjective for all s € S.

Theorem (reduction to actions by surjective maps)

1. hiop(P) = hiop(p) for the restricted action K As.

v
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Reduction to actions on compact spaces by surjective maps

For a right action K A 'S of a cancellative right amenable monoid S on a
compact Hausdorff space K, we build (in 2 steps) its Ore colocalization

K* /~ G, where K* is a compact Hausdorff space and G is the group of
left fractions of S. This construction preserves the topological entropy
and linearity.

The surjective core of K A S is the closed S-invariant subspace
= €

K = E(p) := N,es pe(K) = K of K.

The restriction ps 1= ps [z: K — K is surjective for all s € S.

Theorem (reduction to actions by surjective maps)

1. hiop(P) = hiop(p) for the restricted action K As.

2. this reduction is functorial,

v
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Reduction to actions on compact spaces by surjective maps
For a right action K A 'S of a cancellative right amenable monoid S on a
compact Hausdorff space K, we build (in 2 steps) its Ore colocalization

K* /~ G, where K* is a compact Hausdorff space and G is the group of
left fractions of S. This construction preserves the topological entropy
and linearity.

The surjective core of K fp\ S is the closed S-invariant subspace
K= E(p) mtes pf( ) (_> K of K.
The restriction ps := ps [g: K — K is surjective for all s € S.

Theorem (reduction to actions by surjective maps)

1. hiop(P) = hiop(p) for the restricted action K As.

2. this reduction is functorial, i.e., if K' ¢\ S is an action on a compact
Hausdorff space K' and ¢: K — K’ is an S-equivariant continuous map,
then ¢(K) C K’ and the continuous S-equivariant map

= [g: K— K' is injective (resp., surjective), whenever ¢ is is
injective (resp., surjective).

v
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A by-product towards measure entropy
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A by-product towards measure entropy

According to the well-known Halmos' paradigm, a continuous
endomorphism f : K — K of a compact group is
measure-preserving with respect to the Haar measure of K if and

only if f is surjective.
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A by-product towards measure entropy

According to the well-known Halmos' paradigm, a continuous
endomorphism f : K — K of a compact group is
measure-preserving with respect to the Haar measure of K if and
only if f is surjective.

Therefore, when applied to a right linear action K A Sona
compact group K, the above theorem allows us to pass from p to

the S-action E(p) = K A S by surjective continuous
endomorphisms, hence measure-preserving maps.
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A by-product towards measure entropy

According to the well-known Halmos' paradigm, a continuous
endomorphism f : K — K of a compact group is
measure-preserving with respect to the Haar measure of K if and
only if f is surjective.

Therefore, when applied to a right linear action K A Sona
compact group K, the above theorem allows us to pass from p to

the S-action E(p) = K A S by surjective continuous
endomorphisms, hence measure-preserving maps.

In particular, one can also discuss the measure entropy of such an
action; it is known that when S = G is a countable amenable
group and K is a compact metrizable group, then the topological
and the measure entropy coincide.
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The Ore colocalization K* 5: Gof KAG
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The Ore colocalization K* 5: Gof KAG

For the inverse system & = {(Kg, ps: Kg — Kgs) 1 g € G, s € S},
where K; = K for all g € G, let K* := Liﬂ'nﬁ. The canonical map
Tg = 77?: K* — Kg is surjective for all g € G.
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The Ore colocalization K* 5: Gof KAG

For the inverse system R = {(Kg,ps: Kg = Kgs) 1 g € G, s € S},
where Ky = K for all g € G, let K* := Liﬂ'nﬁ. The canonical map
Tg = ng K* — Kjg is surjective for all g € G.

For g € G let pp: K* — K™ be the unique possible continuous
map such that the following diagram commutes for all h € G:

This defines a right G-action K* A G, named (left) Ore
colocalization of K A S.
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The Ore colocalization K* 5: Gof KAG

For the inverse system R = {(Kg,ps: Kg = Kgs) 1 g € G, s € S},
where Ky = K for all g € G, let K* := Liﬂ'nﬁ. The canonical map
Tg = ng K* — Kjg is surjective for all g € G.

For g € G let pp: K* — K™ be the unique possible continuous
map such that the following diagram commutes for all h € G:

This defines a right G-action K* A G, named (left) Ore
colocalization of K A S.

The next lemma collects some properties of the Ore colocalization.
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Lemma

@ m1: K* — K is (surjective and) S-equivariant, when K* is
endowed with the restriction (p*);s of the action p* to S < G;
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Lemma

@ m1: K* — K is (surjective and) S-equivariant, when K* is
endowed with the restriction (p*);s of the action p* to S < G;

@ the Ore colocalization is functorial,
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Lemma

@ m1: K* — K is (surjective and) S-equivariant, when K* is
endowed with the restriction (p*);s of the action p* to S < G;

@ the Ore colocalization is functorial,i.e., if K' +~ S is an action
on a compact Hausdorff space K" and ¢: K — K’ is an
S-equivariant continuous map, then there is a unique
continuous map ¢*: K* — (K')* such that, for every g € G,
the following diagram commutes

¢*

E/Kow{’,fl i%owgl
K K'.

Furthermore, ¢* is G-equivariant and if ¢ is injective (resp.,
surjective) then so is ¢*.
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Theorem (Invariance under Ore colocalization)

Let KAS be a right S-action by continuous self-maps on a
compact Hausdorff space K. Then hiop(p) = hiop(p) = heop(p*).
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Theorem (Invariance under Ore colocalization)

Let KAS be a right S-action by continuous self-maps on a
compact Hausdorff space K. Then hiop(p) = hiop(p) = heop(p*).

Lemma (exactness of the Ore colocalization of linear actions)

Let K A 'S be a linear S-action on a compact group K, H < K be
a closed S-invariant subgroup and let H' X S and K/H "' S be

the S-actions induced by p on H and on the left coset space K/H,
respectively.

S — il
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Theorem (Invariance under Ore colocalization)

Let KAS be a right S-action by continuous self-maps on a
compact Hausdorff space K. Then hiop(p) = hiop(p) = heop(p*).

Lemma (exactness of the Ore colocalization of linear actions)

Let K A 'S be a linear S-action on a compact group K, H < K be
a closed S-invariant subgroup and let H' X S and K/H "' S be

the S-actions induced by p on H and on the left coset space K/H,
respectively. If 1: H — K is the inclusion and m: K — K /H the
projection, then:

. PH)* . . .
@ the action H* (fo\) G is conjugated to the action

() A 6
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Theorem (Invariance under Ore colocalization)

Let KAS be a right S-action by continuous self-maps on a
compact Hausdorff space K. Then hiop(p) = hiop(p) = heop(p*).

Lemma (exactness of the Ore colocalization of linear actions)

Let K A 'S be a linear S-action on a compact group K, H < K be
a closed S-invariant subgroup and let H' X S and K/H "' S be

the S-actions induced by p on H and on the left coset space K/H,
respectively. If 1: H — K is the inclusion and m: K — K /H the
projection, then:

. PH)* . . .
@ the actlon H* (fo\) G is conjugated to the action

s AT 6

@ 7*: K* — (K/H)* is a surjective, G-equivariant, continuous

. (pryu)™ .
and open map; moreover, the action (K/H)* A Gis

( )
conjugated to the action K*/H* Nl G induced by p*

on the space of left H*-cosets.
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Reduction to the case of actions by injective maps
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Reduction to the case of actions by injective maps

. . A . .
For a left linear action S ~ X on a discrete Abelian group X, we

construct (again in 2 steps) its Ore localization G ~ X*, which is linear
and preserves the algebraic entropy (i.e., hajg(A) = haig(A*)).
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Reduction to the case of actions by injective maps

For a left linear action S A X on a discrete Abelian group X, we
construct (again in 2 steps) its Ore localization G A X*, which is linear
and preserves the algebraic entropy (i.e., hajg(A) = haig(A*)).

Starting with a left S-action S A X on an Abelian group X, define
Ker(A\) :={x € X :3s € S, As(x) =0}. This is a subgroup of X
with A\;1(Ker(A)) = Ker()), for all s € S (so, in particular,
S-invariant).
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Reduction to the case of actions by injective maps

For a left linear action S A X on a discrete Abelian group X, we
construct (again in 2 steps) its Ore localization G ~ X*, which is linear
and preserves the algebraic entropy (i.e., hajg(A) = haig(A*)).

Starting with a left S-action S A X on an Abelian group X, define
Ker(A\) :={x € X :3s € S, As(x) =0}. This is a subgroup of X
with /\s_l(Ker()\))_: Ker(}), for all s € S (so, in particular,
S-invariant). Let X := X/Ker(A) and mx: X — X be the
canonical projection. Define a new left S-action S A X by letting
As(m(x)) = m(As(x)) for all s € S and x € X.
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Reduction to the case of actions by injective maps

. . A : .
For a left linear action S ~ X on a discrete Abelian group X, we

construct (again in 2 steps) its Ore localization G ~ X*, which is linear
and preserves the algebraic entropy (i.e., hajg(A) = haig(A*)).

Starting with a left S-action S A X on an Abelian group X, define
Ker(A\) :={x € X :3s € S, As(x) =0}. This is a subgroup of X
with /\s_l(Ker()\))_: Ker(}), for all s € S (so, in particular,
S-invariant). Let X := X/Ker(A) and mx: X — X be the
canonical projection. Define a new left S-action S A X by letting

As(m(x)) = m(As(x)) for all s € S and x € X. Then
@ ) acts on X by injective endomorphisms (i.e., s is injective

for all s € S) and hyig(A) = haig(N);
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Reduction to the case of actions by injective maps

. . A . .
For a left linear action S ~ X on a discrete Abelian group X, we

construct (again in 2 steps) its Ore localization G ~ X*, which is linear
and preserves the algebraic entropy (i.e., hajg(A) = haig(A*)).

Starting with a left S-action S A X on an Abelian group X, define
Ker(A\) :={x € X :3s € S, As(x) =0}. This is a subgroup of X
with A\;1(Ker(A)) = Ker()), for all s € S (so, in particular,
S-invariant). Let X := X/Ker(\) and mx: X — X be the

canonical projection. Define a new left S-action S A X by letting
As(m(x)) = m(As(x)) for all s € S and x € X. Then
@ ) acts on X by injective endomorphisms (i.e., s is injective

for all s € S) and hyig(A) = haig(N);

@ this reduction is functorial,
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Reduction to the case of actions by injective maps

. . A : .
For a left linear action S ~ X on a discrete Abelian group X, we

construct (again in 2 steps) its Ore localization G ~ X*, which is linear
and preserves the algebraic entropy (i.e., hajg(A) = haig(A*)).

Starting with a left S-action S A X on an Abelian group X, define
Ker(A\) :={x € X :3s € S, As(x) =0}. This is a subgroup of X
with A\;1(Ker(A)) = Ker()), for all s € S (so, in particular,
S-invariant). Let X := X/Ker(\) and mx: X — X be the

canonical projection. Define a new left S-action S A X by letting

As(m(x)) = m(As(x)) for all s € S and x € X. Then

@ ) acts on X by injective endomorphisms (i.e., s is injective
for all s € S) and hag(\) = haig(N);

@ this reduction is functorial, i.e., if S f/\\: X' is an action on an
Abelian group X’ and ¢: X — X' is an S-equivariant
homomorphism, then there is a unique homomorphism
$: X — X' with mx/ 0 ¢ = ¢ o mx; and ¢ is injective (resp.,
surjective), whenever ¢ is injective (resp., surjective).

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



The Ore localization G ~ X* of S A X
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The Ore localization G ~ X* of S A X

Definition. With S, X, A, X and X as above consider the direct
system of Abelian groups:
0 X :={(Xg,cgs0: Xgs = Xg) : 8 € G, s €S}, where Xz := X
and gg5 5 1= Xs: X = X, forallse Sand g € G;
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The Ore localization G ~ X* of S A X

Definition. With S, X, A, X and X as above consider the direct
system of Abelian groups:
0 X :={(Xg,cgs0: Xgs = Xg) : 8 € G, s €S}, where Xz := X
and gg5 5 1= Xs: X = X, forallse Sand g € G;
o with direct limit X* := Ii_)mG% and the canonical morphism
E€g: X = Xg — X* is injective for all g € G. In particular,

identifying Xg = £4(X), one has that X* = {J, ¢ Xe-
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The Ore localization G ~ X* of S A X

Definition. With S, X, A, X and X as above consider the direct
system of Abelian groups:

0 X :={(Xg,eg55: Xgs = Xg) 18 € G, s€ S}, where Xg := X
and ggs g :=As: X — X, forall s € S and g € G;

o with direct limit X* := Ii_)mG% and the canonical morphism
E€g: X = Xg — X* is injective for all g € G. In particular,
identifying X; = £4(X), one has that X* = Ugee Xe-

As in the case of colocalzation, there is a unique G-action
G X X*, named Ore localization of S Av X,and e1: X = X* is
S-equivariant.
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The Ore localization G ~ X* of S A X

Definition. With S, X, A, X and X as above consider the direct
system of Abelian groups:

0 X :={(Xg,eg55: Xgs = Xg) 18 € G, s€ S}, where Xg := X
and ggs g :=As: X — X, forall s € S and g € G;

o with direct limit X* := Ii_)mG% and the canonical morphism
E€g: X = Xg — X* is injective for all g € G. In particular,
identifying X; = £4(X), one has that X* = Ugee Xe-

As in the case of colocalzation, there is a unique G-action
G X X*, named Ore localization of S r)i X,and e1: X = X* is
S-equivariant.

Lemma (The Ore localization is functorial)

. . A* A . .
The Ore localization G ~ X* of S ~ X is functorial and the
assignment ¢ — ¢* preserves injectivity and surjectivity.
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The Ore localization G ~ X* of S A X

Definition. With S, X, A, X and X as above consider the direct
system of Abelian groups:

0 X :={(Xg,eg55: Xgs = Xg) 18 € G, s€ S}, where Xg := X
and gg5 5 1= Xs: X = X, forallse Sand g € G;

o with direct limit X* := Ii_)mG% and the canonical morphism
E€g: X = Xg — X* is injective for all g € G. In particular,
identifying X; = £4(X), one has that X* = Ugee Xe-

As in the case of colocalzation, there is a unique G-action
G X X*, named Ore localization of S r)i X,and e1: X = X* is
S-equivariant.

Lemma (The Ore localization is functorial)

. . A* A . .
The Ore localization G ~ X* of S ~ X is functorial and the
assignment ¢ — ¢* preserves injectivity and surjectivity.

A\

Theorem (Invariance under Ore localization)

In the above setting, hag(A\) = haig(A) = haig(A*).
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Proof of the Bridge Theorem
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Proof of the Bridge Theorem
First we need the following:

Lemma

Given a left S-action S A X on a discrete Abelian group X, let

K := X" pzji\ S be the right S-action induced by \ on the dual
compact Abelian group K := X".
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Proof of the Bridge Theorem
First we need the following:

Lemma

Given a left S-action S A X on a discrete Abelian group X, let
=N

K:=X "2 S be the right S-action induced by A on the dual

compact Abelian group K := X".

@ Ker(\)* = E(p) < K. Furthermore, \" is conjugated to p.

Dikran Dikranjan Udine University, Italy Entropy of amenable monoid actions



Proof of the Bridge Theorem
First we need the following:

Lemma

Given a left S-action S A X on a discrete Abelian group X, let

K := X" pzji\A S be the right S-action induced by \ on the dual

compact Abelian group K := X".

@ Ker(\)* = E(p) < K. Furthermore, \" is conjugated to p.

@ Let G~ X* be the Ore localization of A\, K := X" p:?\A )
the right S-action induced by \ on the dual, and K* f/): G the

Ore colocalization of p. Then, K* G is conjugated to
()"
K~ S
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Proof of the Bridge Theorem
First we need the following:

Lemma

Given a left S-action S A X on a discrete Abelian group X, let

K := X" pzji\A S be the right S-action induced by \ on the dual

compact Abelian group K := X".

@ Ker(\)* = E(p) < K. Furthermore, \" is conjugated to p.

@ Let G~ X* be the Ore localization of A\, K := X" p:?\A )
the right S-action induced by \ on the dual, and K* vfp: G the

Ore colocalization of p. Then, K* G is conjugated to
()"
K~ S

Item (2), roughly speaking, says that, the Ore (co-)localization and
the dual “commute” up to conjugacy, i.e., ()\*/\ is conjugated to

(A")")
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Proof of the Bridge Theorem.

Let KA Sbeaa right S-action. We need to prove that
htop(p) = haig(A), with X := p" its dual action on X = K"
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Proof of the Bridge Theorem.

Let KA Sbeaa right S-action. We need to prove that
htop(p) = haig(A), with X := p" its dual action on X = K"
By the invariance of entropy w.r.t. Ore (co-)localization

htop(p) = htop(p*) and halg()\) = halg()\*)~
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Proof of the Bridge Theorem.

Let KA Sbeaa right S-action. We need to prove that
htop(p) = haig(A), with X := p" its dual action on X = K"
By the invariance of entropy w.r.t. Ore (co-)localization

htop(p) = htop(p*) and halg()\) = halg()\*)~

By item (2) of the previous lemma, (A\*)" = ((p")*)" is
conjugated to (p™)*, which is obviously conjugated to p*. Hence,
hop(p™) = ht0p(()‘*)/\)~
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Proof of the Bridge Theorem.

Let KA Sbeaa right S-action. We need to prove that
htop(p) = haig(A), with X := p" its dual action on X = K"
By the invariance of entropy w.r.t. Ore (co-)localization

htop(p) = htop(p*) and halg()\) = halg()\*)~

By item (2) of the previous lemma, (A\*)" = ((p")*)" is
conjugated to (p™)*, which is obviously conjugated to p*. Hence,
hop(p*) = hiop((A*)"). By the Bridge Theorem for actions of
amenable groups,

hrop((A)") = haig(X7).

Therefore, hiop(p) = hatg(N)- O
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Applications: Proof of the Addition Theorems for hy,, and h,,
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Applications: Proof of the Addition Theorems for hy,, and h,,

Theorem (Addition Theorem for hyop)

For a right linear action K ASona compact group K and a
p-invariant closed subgroup H of K the S-actions actions py and
pk/H (induced by p on H and on the left cosets space K /H,
respectively) satisfy

hiop(p) = hiop(pH) + hrop(Pk/H)-
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Applications: Proof of the Addition Theorems for hy,, and h,,

Theorem (Addition Theorem for hyop)

For a right linear action K ASona compact group K and a
p-invariant closed subgroup H of K the S-actions actions py and
pk/H (induced by p on H and on the left cosets space K /H,
respectively) satisfy

hiop(p) = hiop(pH) + hrop(Pk/H)-

This was known for N-actions as well as for actions of countable
amenable groups on compact metrizable groups with H normal [Li].
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Applications: Proof of the Addition Theorems for hy,, and h,,

Theorem (Addition Theorem for hyop)

For a right linear action K ASona compact group K and a
p-invariant closed subgroup H of K the S-actions actions py and
pk/H (induced by p on H and on the left cosets space K /H,
respectively) satisfy

hiop(p) = hiop(pH) + hrop(Pk/H)-

This was known for N-actions as well as for actions of countable
amenable groups on compact metrizable groups with H normal [Li].
Proof. First assume that S = G is a group. Consider the diagonal
action (pH)cov @ (Pk /H)cov of G on cov(H) @ cov(K/H), having
as norm the sum of the respective norms. Since the norms of
cov(H) and cov(K/H) (hence, of cov(H) @ cov(K/H) as well) are
sub-additive (so the s-entropy is a limit), one obtains
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h((pH)cov @ (P /H)cov: 8) = h((pH)cov: 8) + h((Pk/H)cov,8).  (¥)
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h((pH)cov @ (P /H)cov: 8) = h((pH)cov: 8) + h((Pk/H)cov,8).  (¥)

At this point one can use the following “splitting trick”

Proposition (the splitting trick)

The G-actions peoy and (pH)cov @ (Pk/H)cov are as. equivalent.
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h((pH)cov @ (P /H)cov: 8) = h((pH)cov: 8) + h((Pk/H)cov,8).  (¥)

At this point one can use the following “splitting trick”

Proposition (the splitting trick)

The G-actions peoy and (pH)cov @ (Pk/H)cov are as. equivalent.

This implies that the corresponding entropies coincide

h(pcowﬁ) = h((pH)cov D (pK/H)COV75)‘ (**)
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h((pH)cov @ (P /H)cov: 8) = h((pH)cov: 8) + h((Pk/H)cov,8).  (¥)

At this point one can use the following “splitting trick”

Proposition (the splitting trick)

The G-actions peoy and (pH)cov ® (PK/H)cov are as. equivalent.

This implies that the corresponding entropies coincide

h(pcowﬁ) = h((pH)cov D (pK/H)COV75)‘ (**)

Since the quantities in (*) and (**) do not depend on s, these
equalities, along with the definition of h,, give

htOp(p) = h(pcows) = h((pH)cowﬁ) + h((pK/H)Cov,ﬁ) =

htOp(PH) + htop(PK/H)
as required.

This ends the proof in the case case S = G is a group.
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(Continuation of Proof, general case.)
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(Continuation of Proof, general case.)
Let G = S!S be the group of left fractions of S.
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(Continuation of Proof, general case.)

Let G = S!S be the group of left fractions of S.

By the exactness of the Ore colocalization, we can identify H* with
a closed p-invariant subgroup of K* (so that it makes sense to
consider the space of left H*-cosets K*/H*), and we can identify
K*/H* with (K/H)*.
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(Continuation of Proof, general case.)

Let G = S!S be the group of left fractions of S.

By the exactness of the Ore colocalization, we can identify H* with
a closed p-invariant subgroup of K* (so that it makes sense to
consider the space of left H*-cosets K*/H*), and we can identify
K*/H* with (K/H)*. By the previous case

heop(P") = hrop((P*)H+) + hrop((07) K /1i+)- (1)
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(Continuation of Proof, general case.)

Let G = S!S be the group of left fractions of S.

By the exactness of the Ore colocalization, we can identify H* with
a closed p-invariant subgroup of K* (so that it makes sense to
consider the space of left H*-cosets K*/H*), and we can identify
K*/H* with (K/H)*. By the previous case

heop(P") = hrop((P*)H+) + hrop((07) K /1i+)- (1)

In view of the above identifications,

heop((p™)H=) = hrop((PH)") - and  heop((P") ik =) = hrop((PK/H)")-
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(Continuation of Proof, general case.)

Let G = S!S be the group of left fractions of S.

By the exactness of the Ore colocalization, we can identify H* with
a closed p-invariant subgroup of K* (so that it makes sense to
consider the space of left H*-cosets K*/H*), and we can identify
K*/H* with (K/H)*. By the previous case

hiop(p™) = hrop((P") =) + Brop (P ) k= /1+)- (1)
In view of the above identifications,
heop((p™)H=) = hrop((PH)") - and  heop((P") ik =) = hrop((PK/H)")-
By the invariance of hi,, under Ore colocalization,

htop(P*) = htop(p)s brop((PH)") = htop(pPH)
and hiop((Pk/H)*) = htop(pk/H)- Now (1) gives

hiop(p) = hrop(pH) + hrop(PK /1)- O



Addition Theorem for h,,
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Addition Theorem for h,,

From the Addition Theorem for hi,, and the Bridge Theorem, we

. . A
deduce now an Addition Theorem for hyj, for left actions S ~ X of
a cancellative amenable monoid S on a discrete Abelian group X:
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Addition Theorem for h,,

From the Addition Theorem for hi,, and the Bridge Theorem, we

. . A
deduce now an Addition Theorem for hyj, for left actions S ~ X of
a cancellative amenable monoid S on a discrete Abelian group X:

Theorem (Addition Theorem for h,,)

For a linear action S A X on an abelian group X and a A-invariant
closed subgroup Y of X the left S-actions actions Ay and Ax/y
(induced by X on Y and the quotient X /Y, respectively) satisfy

haig(A) = hag(Ay) + halg(/\X/Y)-
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Addition Theorem for h,,

From the Addition Theorem for hi,, and the Bridge Theorem, we

. . A
deduce now an Addition Theorem for hyj, for left actions S ~ X of
a cancellative amenable monoid S on a discrete Abelian group X:

Theorem (Addition Theorem for h,,)

For a linear action S A X on an abelian group X and a A-invariant
closed subgroup Y of X the left S-actions actions Ay and Ax/y
(induced by X on Y and the quotient X /Y, respectively) satisfy

haig(A) = hag(Ay) + halg(/\X/Y)-

So far direct proofs of this fact are known only under the
hypotheses that either X is torsion (Fornasiero, Giordano Bruno,
DD [2020]) or S is countable and locally monotileable (Fornasiero,
Giordano Bruno, Salizzoni, DD [2022]).
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Proof. Consider the compact Abelian group K :

X/, its closed

subgroup H := Y= and its quotient group K/H = Y.
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Proof. Consider the compact Abelian group K := X”\, its closed
subgroup H := Y= and its quotient group K/H = Y.

If p:= A", then H is p-invariant and the action py induced by p
on H by restriction is conjugated to ()\X/y)/\, while the right
S-action pk induced by p on K/H is conjugated to ()"
Therefore, one can now conclude via the following series of
equalities:

haig(A) = hiop(p) by the Bridge Theorem;
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Proof. Consider the compact Abelian group K := X”\, its closed
subgroup H := Y= and its quotient group K/H = Y.

If p:= A", then H is p-invariant and the action py induced by p
on H by restriction is conjugated to ()\X/y)/\, while the right
S-action pk induced by p on K/H is conjugated to ()"
Therefore, one can now conclude via the following series of
equalities:

haig(A) = hiop(p) by the Bridge Theorem;
= hop(pH) + hiop (P /1) by the AT for hyop;
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Proof. Consider the compact Abelian group K := X”\, its closed
subgroup H := Y= and its quotient group K/H = Y.

If p:= A", then H is p-invariant and the action py induced by p
on H by restriction is conjugated to ()\X/y)/\, while the right
S-action pk induced by p on K/H is conjugated to ()"
Therefore, one can now conclude via the following series of

equalities:
haig(A) = hiop(p) by the Bridge Theorem;
= hop(pH) + hiop (P /1) by the AT for hyop;
= hiop(Ax/y" ) + Brop(Ay") by invariance under conjug.;
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Proof. Consider the compact Abelian group K := X”\, its closed
subgroup H := Y= and its quotient group K/H = Y.

If p:= A", then H is p-invariant and the action py induced by p
on H by restriction is conjugated to ()\X/y)/\, while the right
S-action pk induced by p on K/H is conjugated to ()"
Therefore, one can now conclude via the following series of

equalities:
haig(A) = hiop(p) by the Bridge Theorem;
= hop(pH) + hiop (P /1) by the AT for hyop;
= hiop(Ax/y" ) + Brop(Ay") by invariance under conjug.;
= hag(Ay) + hag(Ax/v) by the Bridge Theorem.
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The “Queen” of entropies of N-actions
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