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background

1. An S space (can be thought of) as a right separated HS
regular topology on ω1 ( α+1 is open for all α < ω1)

2. A Moore-Mrowka space is a compact (separable)
non-sequential space of countable tightness.

that’s R. C. Moore !?
3. An Iw1-space is a separable initially ℵ1-compact

non-compact space of countable tightness.

4. The C̆ech-Stone compactification of an Iw1-space is a
Moore-Mrowka space.

It is independent if any of these exist but let’s dig deeper
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start with CH

S spaces exist

[Ostaszewski] ♦ implies there is additionally countably compact
Θ so its 1-point compactification is a Moore-Mrowka space.

[Fedorchuk] ♦ implies there is compact HS (with many S
subspaces) that has no converging sequences and every
infinite subset has cardinality > c.

Two extreme versions of Moore-Mrowka spaces;
CH does not imply Moore-Mrowka spaces exist.

[Dow, van Douwen] There are no Iw1-spaces.
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models of c = ℵ2

Cohen indestruct. versions of Ostaszewski and Fedorchuk exist

hence S and Moore-Mrowka spaces consistent with c = ℵ2

[Rabus] It is consistent (with c = ℵ2) that there is an Iw1-space.

[Kosz., Juh, Soukup] the Iw1-space can be first countable

Theorem ( Assume PFA)

1. [Stevo] there are no S spaces (more on this later)
2. [Balogh] there are no Moore-Mrowka spaces

and therefore no Iw1-spaces.
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what about Martin’s Axiom and c = ℵ2?

1. [Szent.] there are no first countable S spaces (e.g. Θ)

2. [Avraham-Todorcevic] there can be S spaces
3. There can be an Iw1-space (hence a Moore-Mrowka)

this one we now tell you a little bit

Rabus forces there to be a Θω2 (i.e. Ostaszewski style (loc. cpt.
scattered) topology on ω2). using Baum.-Shelah style forcing
with ∆-function

[KJS] adapt earlier Koszmider techniques to construct a finite
condition (i.e. absolute) ccc poset Q0 that not only adds Θω2

but also a resolution f : X 7→ Θω2 so that X is first countable Iw1
with very special properties.
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a special Iw1-space

The forcing Q0 ensures the continuous perfect mapping
f : X 7→ Θω2 satisfies

1. for each α ∈ ω2, f−1({α}) = Cα (Cantor set)
2. f is a resolution in the sense that each r ∈ Cα, has (modulo

a single compact set Kr with f (Kr ) ⊂ α) a countable clopen
base of <α-saturated sets (f−1(f (U) ∩ α) ⊂ U),

3. every infinite subset of Θω2 has compact closure or co-ω1
closure (analogue of Θ); and, ∀α < ω2, (α, α + ω) has
co-ω1-closure.

It can be checked (it was by me) that property 3. is preserved
by ccc posets of cardinality ℵ1

tightness of Θω2?? no need! the character of X is preserved by
any poset. And that’s how we get Martin’s Axiom
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Stevo’s original 1982 proof of no S spaces

and a model with a Moore-Mrowka space and no S spaces!

Given ~W = {Wα : α < ω1} ⊂ [ω1]<ℵ1 define Q ~W ⊂ [ω1]<ℵ0

where α 6= β ∈ q ∈ Q ~W implies α /∈Wβ, and ordered by ⊃

~W is an S space sequence if α ∈Wα a clopen subset of α+1 in
an HS topology. Then Q ~W adds a discrete subset

Remark
Q ~W is designed to force a discrete subset

For Moore-Mrowka just change to
α < β ∈ q implies α ∈Wβ

to force a free sequence

Hence my view that the problems are similar.
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forcing tools

Remark
Q ~W need not be ccc

recall MA(ω1) is consistent with there being S spaces

Jensen’s cub poset J = {〈a,A〉 : a = a ∈ [ω1]<ℵ1 ,A ⊂ ω1 cub}
and (a,A) < (b,B) providing b ⊂ a ⊂ b ∪ B \max(b),A ⊂ B

Let CJ denote the generic “fast” cub added

Given a cub C ⊂ ω1, let (separated by C):
Q ~W [C] = {q ∈ Q ~W : γ ∈ C → |q ∩ (γ+C \ γ)| ≤ 1}

Remark
possibly even better: elementary submodels as side conditions
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getting Q ~W to be ccc

utilizing recent (in 1980) ideas of Avraham, Shelah, and Rubin

Cω1 adds ω1-many Cohen reals

Lemma (Stevo)

Let R be a ccc poset and let ~W be an S space sequence

Cω1 ∗ J̇ 
 Ř ∗Q ~W [CJ ] is ccc

Lemma (Stevo)

Let (Cω1 ∗ J̇ )ω2 be the mixed finite/countable support iteration.
Let R be a ccc poset.

(Cω1 ∗ J̇ )ω2 is proper and forces that R remains ccc.
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here’s what happens next

(
Cω1 ∗ J̇

)
λ
∗〈Q̇β : β < λ〉 (tail is ccc – call it R)

(
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λ
∗ ... 〈Q̇β : β < λ〉 (tail is ccc)
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Cω1 ∗ J̇

)
ω2\λ

∗ 〈Q̇β : β < λ〉 (still ccc)

insert

then jump back to
(
Cω1 ∗ J̇

)
λ+1
∗ 〈Q̇β : β < λ〉 to choose Q̇λ

to continue the recursive construction of Pω2+ω2



here’s what happens next

(
Cω1 ∗ J̇

)
λ
∗〈Q̇β : β < λ〉 (tail is ccc – call it R)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (tail is ccc)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗ ...

made some room

〈Q̇β : β < λ〉 (ccc)
(
Cω1 ∗ J̇

)
λ
∗

(
Cω1 ∗ J̇

)
ω2\λ

∗ 〈Q̇β : β < λ〉 (still ccc)

insert

then jump back to
(
Cω1 ∗ J̇

)
λ+1
∗ 〈Q̇β : β < λ〉 to choose Q̇λ

to continue the recursive construction of Pω2+ω2



here’s what happens next

(
Cω1 ∗ J̇

)
λ
∗〈Q̇β : β < λ〉 (tail is ccc – call it R)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (tail is ccc)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗ ...

made some room

〈Q̇β : β < λ〉 (ccc)
(
Cω1 ∗ J̇

)
λ
∗

(
Cω1 ∗ J̇

)
ω2\λ

∗ 〈Q̇β : β < λ〉 (still ccc)

insert

then jump back to
(
Cω1 ∗ J̇

)
λ+1
∗ 〈Q̇β : β < λ〉 to choose Q̇λ

to continue the recursive construction of Pω2+ω2



here’s what happens next

(
Cω1 ∗ J̇

)
λ
∗〈Q̇β : β < λ〉 (tail is ccc – call it R)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (tail is ccc)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗ ...

made some room

〈Q̇β : β < λ〉 (ccc)
(
Cω1 ∗ J̇

)
λ
∗

(
Cω1 ∗ J̇

)
ω2\λ

∗ 〈Q̇β : β < λ〉 (still ccc)

insert

then jump back to
(
Cω1 ∗ J̇

)
λ+1
∗ 〈Q̇β : β < λ〉 to choose Q̇λ

to continue the recursive construction of Pω2+ω2



here’s what happens next

(
Cω1 ∗ J̇

)
λ
∗〈Q̇β : β < λ〉 (tail is ccc – call it R)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (tail is ccc)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗ ...

made some room

〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗

(
Cω1 ∗ J̇

)
ω2\λ

∗ 〈Q̇β : β < λ〉 (still ccc)

insert

then jump back to
(
Cω1 ∗ J̇

)
λ+1
∗ 〈Q̇β : β < λ〉 to choose Q̇λ

to continue the recursive construction of Pω2+ω2



here’s what happens next

(
Cω1 ∗ J̇

)
λ
∗〈Q̇β : β < λ〉 (tail is ccc – call it R)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (tail is ccc)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗ ...

made some room

〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗

(
Cω1 ∗ J̇

)
ω2\λ

∗ 〈Q̇β : β < λ〉 (still ccc)

insert

then jump back to
(
Cω1 ∗ J̇

)
λ+1
∗ 〈Q̇β : β < λ〉 to choose Q̇λ

to continue the recursive construction of Pω2+ω2



here’s what happens next

(
Cω1 ∗ J̇

)
λ
∗〈Q̇β : β < λ〉 (tail is ccc – call it R)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (tail is ccc)

(
Cω1 ∗ J̇

)
λ
∗ ... 〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗ ...

made some room

〈Q̇β : β < λ〉 (ccc)

(
Cω1 ∗ J̇

)
λ
∗

(
Cω1 ∗ J̇

)
ω2\λ

∗ 〈Q̇β : β < λ〉 (still ccc)

insert

then jump back to
(
Cω1 ∗ J̇

)
λ+1
∗ 〈Q̇β : β < λ〉 to choose Q̇λ

to continue the recursive construction of Pω2+ω2



[not Stevo] also (Cω1 ∗ J̇ )ω2 forces the [KJS] poset Q0 for Θω2 is
not only ccc but still does its Iw1-space thing.

[Stevo] Let λ < ω2 and assume that, for 0 < α < λ, Q̇α is a
(Cω1 ∗ J̇ )α∗〈Q̇β : β < α〉-name of a ccc poset

assume that ~W is a (Cω1 ∗ J̇ )λ∗〈Q̇β : β < λ〉-name of an S
space sequence

[yep, still Stevo] Then with CJ ,λ being the cub at stage λ of
(Cω1 ∗ J̇ )ω2 and with Q̇λ = Q ~W [CJ ,λ]

(Cω1 ∗ J̇ )ω2∗〈Q̇β : β ≤ λ〉 is ccc

for MA(ℵ1): often for α < ω2 let Q̇α be the next small ccc poset .

This gives no S spaces, MA, and Q0 gives a Moore-Mrowka
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now for c = κ > ℵ2 with suitable ♦

Modifying an earlier Avraham result we let

(Cω1 ∗ J̇ )κ be a very mixed support iteration

still finite for Cω1 terms, but a strange combination for
〈ȧ, Ȧ〉 ∈ J̇α

c > ℵ1 implies that J collapses c so ȧ is limited to having
support in an ℵ1-sized subset of α and only special names (but
with no limit on support) are permitted for Ȧ.

Assume, by induction, that for some λ < κ, for each α < λ,
Q̇α is a (Cω1 ∗ J̇ )α∗〈Q̇β : β < α〉-name of a ccc poset
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then

A pretty non-trivial modification of several aspects of the proof

Theorem
If ~W is a (Cω1 ∗ J̇ )λ∗〈Q̇β : β < λ〉-name of an S space
sequence, then there is an α ≥ λ so that

(Cω1 ∗ J̇ )κ 
 〈Q̇β : β < α〉 ∗Q[CJ ,α] is ccc

where Q̇β λ ≤ β < α can be, e.g. , Cω
and therefore can ensure no S spaces.

with still more effort we can also ensure there are no
Moore-Mrowka spaces with cardinality greater than κ (i.e. c).
Much harder since we are still trying to kill with ℵ1-sized posets.
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