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Introduction

A space X is

@ Menger, briefly M, if for each sequence (U, : n € w) of open covers of
X there exists a sequence (V, : n € w) such that V,, n € w, is a finite
subset of U, and X = J,.c,, U Va;
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@ Menger, briefly M, if for each sequence (U, : n € w) of open covers of
X there exists a sequence (V, : n € w) such that V,, n € w, is a finite
subset of U, and X = J,.c,, U Va;

@ Hurewicz, briefly H, if for each sequence (U, : n € w) of open covers
of X there exists a sequence (V, : n € w) such that V,, n € w, is a
finite subset of U, and for every x € X, x € |V, for all but finitely
many n € w.
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(Vn : n € w) such that V,, n € w, is a finite subset of U, (resp., (F,: n € w)
such that Fj,, n € w, is a finite subset of X) and X =, st(lU V. Us) (
resp., X = e, St(Fn,Un));

@ star Hurewicz, briefly SH (strongly star Hurewicz, briefly SSH) if for each
sequence (U, : n € w) of open covers of X there exists a sequence
(V@ n € w) such that V,, n € w, is a finite subset of U, (resp., (F,: n € w)
such that F,, n € w, is a finite subset of X) and Vx € X, x € st(U V,, Ux)
(resp., x € st(F,,U,)) for all but finitely many n € w.
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Introduction

Definition (Ko&inac, Konka, Singh; 2022)

@ set star Menger, shortly set SM (resp., set strongly star Menger, shortly set
SSM) if for each nonempty subset A of X and for each sequence
(U, : n € w) of collection of open sets of X such that A C |JU, for every
n € w, there exists a sequence (V, : n € w) such that V,, n € w, is a finite
subset of U, (resp., (F, : n € w) such that F,, n € w, is a finite subset of A)
and A C U,c,, st(UVa,Un) (resp., A C U,e,, St(Fn,Un)).
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subset of U, (resp., (F, : n € w) such that F,, n € w, is a finite subset of A)
and A C U, st(UVa,Un) (resp., A C U, e, st(Fn,Un)).

@ set star Hurewicz, shortly set SH (resp., set strongly star Hurewicz, shortly
set SSH) if for each nonempty subset A of X and for each sequence
(U, : n € w) of collection of open sets of X such that A C |JU, for every
n € w, there exists a sequence (V, : n € w) such that V,, n € w, is a finite
subset of U, (resp., (F, : n € w) such that F,, n € w, is a finite subset of A)
and for every x € A, x € st(|JVa,U,) for all but finitely many n € w (resp.,
for every x € A, x € st(F,,U,) for all but finitely many n € w).
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Introduction

A space X is

@ star compact, briefly SC (strongly star compact, briefly SSC) if for every
open cover U of the space X, there exists a finite subfamily V of U (resp., a
finite subset F of X) such that st(|JV,U) = X (resp., st(F,U) = X)
[lkenaga, Tani, 1980; van Douwen, Reed, Roscoe, Tree, 1991];
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sets in X such that A C JU, there exists a finite subfamily V of U (resp.,
finite subset F of A) such that st(|JV,U) D A (resp.,
st(F,U) D A)[Kotinac, Konka, Singh, 2022].

"finite” — " countable”

e SL and SSL [lkenaga,1983; 1. 1990];
@ set SL and set SSL [Kotinac, Singh; 2020].
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Proposition (Bonanzinga, Maesano; 2020)

In the class of Hausdorff spaces, X CC <= X set SSC <= X SSC.

Proposition (Bonanzinga, Giacopello, Maesano; 2022)

In the class of regular spaces, X CC <= X set SC

Proposition (B.Mae.; 2020)
In the class of Ty spaces, X set SSL <= e(X) <w




Diagram

Lindelof M H Compact
l '
countable extent s/‘et 55C
I n set SSM set SSH / \
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ccc = "countable chain condition”.
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Between CC and countable extent
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Between CC and countable extent

CC = set SSH = set SSM = countable extent.

Example (B.G.M.; 2022)
A Tychonoff space of cardinality ® having countable extent which is not
set SSM.

@ Let X be a cofinal subset of the Baire space w® of cardinality 0.

@ X has countable extent.

@ X is not set SSM: indeed, X is not M and in the class of
paracompact Hausdorff spaces we have that M < SM.

Where @ = min{|X| : X is a cofinal subset of w® }
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Proposition (Sakai; 2014)

If [X| < 9, then X SL (SSL) = X SM (SSM).

Proposition (B.G.M.; 2022)

If | X| <9, then X set SL (set SSL) = X set SM (set SSM).

Corollary (B.G.M.; 2022)

If X is T; and |X| <0, then X set SSM <= e(X) < w.
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Between CC and countable extent

Example (B.G.M.; 2022)

(b < 0) There is a Tychonoff set SSM space which is not set SSH.

@ Let X be an unbounded subset of the Baire space w* of cardinality b.
@ X is set SSM, by the previous corollary.

@ X is not set SSH.Indeed X is not H and in the class of paracompact
Hausdorff spaces we have that H < SH.

Where b = min{|X| : X is an unbounded subset of w* }

Example (B.G.M.; 2022)

A set SSH, not CC space.

@ The discrete space w.
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The extent of set SM

Theorem (Sakai; 2014)

If X is a regular SM space such that w(X) = ¢, then every closed and
discrete subspace of X has cardinality less than ¢. Hence, we have
e(X) <ec.
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The extent of set SM

Theorem (Sakai; 2014)

If X is a regular SM space such that w(X) = ¢, then every closed and
discrete subspace of X has cardinality less than ¢. Hence, we have
e(X) <ec.

Theorem (B.G.M.; 2022)

If X is a regular set SM space, then every closed and discrete subspace
of X has cardinality less than ¢. Hence, we have e(X) < c.
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Set SM vs SM and set SH vs SH

Example (B.G.M.; 2022)

A Tychonoff SC (hence SH and SM) space which is not set SM (hence
not set SH and neither set SC).
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A Tychonoff SC (hence SH and SM) space which is not set SM (hence
not set SH and neither set SC).

o Let X(c) = (2° x ¢")U(Z x {c"}) € 2¢ x (¢t + 1), where Z denotes
the set of the points in 2° with the only the ath coordinate equal to 1.
e X(c) is SC [Sakai, 2014], hence SM.

e X(c) it is not set SM. Indeed, Z x {c"} is a closed discrete subspace
of X(¢) of cardinality ¢ and the previous theorem holds.
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Set SSH vs set SH

Proposition (B.G.M.; 2022)
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@ (SM x Compact) is SM [Kotinac, 1999].

o (©")(SSM x Compact) need not be SSM, in fact
- (wl < 0)
- X =V(A) with | A| = w1, is SSM [Bonanzinga, Matveev, 2009].
- Let Y be a compact space with ¢(Y) > w.
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°

(SSL x Compact) need not be SSL [van Douwen, Reed, Roscoe,
Tree, 1991].

@ (SM x Compact) is SM [Kotinac, 1999].
o (©")(SSM x Compact) need not be SSM, in fact
- (wl < 0)
- X = WV(A) with |A| = wy, is SSM [Bonanzinga, Matveev, 2009].

- Let Y be a compact space with ¢(Y) > w.
- X x Y is not SSL, hence not SSM [Bonanzinga, Matveev; 2001].
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The product with a compact space

Question (Kotinac, Konca, Singh; 2022)

Is the product of a set SM (set SSM) space with a compact space a set
SM (set SSM) space?
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The product with a compact space

Question (Kotinac, Konca, Singh; 2022)

Is the product of a set SM (set SSM) space with a compact space a set
SM (set SSM) space?

@ Partial answer, for set SSM

@ NO, for set SM spaces.
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On the product of a set SSM space with a compact space

A map is perfect if it is continuous, closed, surjective and each fiber is
compact.

Lemma (B.G.M.; 2022)

Uncountable closed discrete subspaces are preserved by perfect maps.

Proposition (B.G.M.; 2022)

The product of a space having countable extent with a compact space
has countable extent.
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On the product of a set SSM space with a compact space

Proposition (B.G.M.; 2022)
The product of a T; set SSL space with a T; compact space is set SSL.
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On the product of a set SM space with a compact space

Proposition (B.G.M.; 2022)

If e(X) > w and ¢(Y) > w, where Y is Ty, then X x Y is not set SL.
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On the product of a set SM space with a compact space

Proposition (B.G.M.; 2022)

If e(X) > w and ¢(Y) > w, where Y is Ty, then X x Y is not set SL.

Example (B.G.M.; 2022)

A set SC (hence set SH, set SM and set SL) space X and a compact
space Y such that X x Y is not set SL (hence neither set SM nor set
SH nor set SC).

@ Let X =wj UA be, where A={a, : a € w1} is a set of cardinality
w1; wy has the usual order topology and is an open subspace of X; a
basic neighborhood of a point a, € A takes the form
Os(an) = {aa} U (B,w1), where 8 < w.

@ Y is any compact space with ¢(Y) > w.

e X is set SC [Bonanzinga, Maesano, 2020], hence set SM .

@ X x Y is not set SL.



On the product of set SSH spaces with a compact space

Proposition (B.G.M.; 2022)

The product of a set SSH space with a compact space has countable
extent.
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On the product of set SSH spaces with a compact space
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On the product of set SSH spaces with a compact space

Proposition (B.G.M.; 2022)

The product of a set SSH space with a compact space has countable
extent.

Proposition (B.G.M.; 2022)

The T; product of cardinality less than b of a set SSH space with a
compact space is set SSH.

Question (B.G.M.; 2022)

Is the product of a set SSH space with a compact space a set SSH
space?
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