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Definitions

A topological dynamical system is a pair (X ,G ), where X is a
compact Hausdorff space, and G a topological group which acts on
X as a group of homeomorphisms. Thus the G -action is given by a
continuous homomorphism j : G → Homeo (X ), j(g) = ğ , where
Homeo (X ) is equipped with the uniform topology. Usually, we
identify g with ğ and write gx for ğ x .
When the acting group is the group of integers Z, the system is
often called a cascade and we write (X ,T ) instead of (X ,Z);
where T is the homeomorphism j(1).



The system (X ,G ) is :
• point transitive if there is a point x ∈ X whose orbit Gx is
dense (Gx = X ).
• minimal when Gx is dense in X for every x ∈ X .
• proximal if for every x , y ∈ X there is z ∈ X and a net gi ∈ G
such that lim gi (x , y) = lim(gix , giy) = (z , z).
• strongly proximal if for every probability measure µ ∈ P(X )
there is z ∈ X and a net gi ∈ G such that lim giµ = δz .



• A factor map or a homomorphism π : (X ,G )→ (Y ,G ) of
dynamical systems is a continuous surjective map such that
π(gx) = gπ(x) for all x ∈ X and g ∈ G . We say that (Y ,G ) is a
factor of (X ,G ) and that (X ,G ) is an extension of (Y ,G ).
• A factor map π : (X ,G )→ (Y ,G ) is a proximal extension if
for every y ∈ Y , every pair of points x , x ′ ∈ X with π(x) = π(x ′)
is proximal. It is strongly proximal when for every y ∈ Y and
every probability measure ν with supp ν ⊂ π−1(y) there is a net
gi ∈ G and a point z ∈ X such that giν → δz .
• It is called an almost one-to-one extension if the set
{x ∈ X : ι−1(ι(x)) = {x}} is a dense Gδ subset of X . For a
minimal (X ,G ) this implies that π is a strongly proximal extension.
• Finally an extension π is isometric if there is a compatible G
invariant “metric” on the subset

{(x , x ′) ∈ X × X : π(x) = π(x ′)}.



The enveloping semigroup

The enveloping semigroup E = E (X ,G ) = E (X ) of a dynamical
system (X ,G ) is defined as the closure in XX (with its compact,
usually non-metrizable, pointwise convergence topology) of the set
Ğ = {ğ : X → X}g∈G considered as a subset of XX . With the
operation of composition of maps this is a right topological
semigroup (i.e. for every p ∈ E (X ) the map Rp : q 7→ qp,
Rp : E (X )→ E (X ) is continuous).



The BFT dichotomy

The following theorem is due to Bourgain, Fremlin and Talagrand
[BFT-78], generalizing a result of Rosenthal.

Theorem (BFT dichotomy)

Let X be a Polish space and let {fn}∞n=1 ⊂ C (X ) be a sequence of
real valued functions which is pointwise bounded (i.e. for each
x ∈ X the sequence {fn(x)}∞n=1 is bounded in R). Let K be the
pointwise closure of {fn}∞n=1 in RX . Then either K ⊂ B1(X ) (i.e.
K is Rosenthal compact) or K contains a homeomorphic copy of
βN (the Stone-Čech compactification of a discrete countable set).



In a seminal paper [Ko-95], Köhler pointed out the relevance of the
BFT theorem to the study of enveloping semigroups. She calls a
dynamical system, (X , φ), where X is a compact Hausdorff space
and φ : X → X a continuous map, regular if for every function
f ∈ C (X ) the sequence {f ◦ φn : n ∈ N} does not contain an `1
sub-sequence (the sequence {fn}n∈N is an `1-sequence if there are
strictly positive constants a and b such that

a
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k=1

|ck | ≤

∥∥∥∥∥
n∑
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ck fk
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n∑
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for all n ∈ N and c1, . . . , cn ∈ R). According to BFT “not
containing an `1 sub-sequence” is equivalent to K ⊂ B1(X ). Since
the word “regular” is already overused in topological dynamics I
call such systems tame.



The corresponding dynamical dychotomy

The following theorem is from [G-06] and [GM-06]:

Theorem (A dynamical BFT dichotomy)

Let (X ,G ) be a metric dynamical system and let E (X ,G ) be its
enveloping semigroup. We have the following dichotomy. Either

1. E (X ,G ) is separable Rosenthal compact, hence with
cardinality cardE (X ) ≤ 2ω; or

2. the compact space E (X ,G ) contains a homeomorphic copy of
βN, hence

cardE (X ,G ) = 22
ω
.

A dynamical system is called tame if the first alternative occurs,
i.e. E (X ,G ) is Rosenthal compact.



The theorem above can be rephrased as saying that a metric
dynamical system (X ,G ) is either tame (with cardE (X ,G ) ≤ 2ω),
or E (X ,G ) contains a topological copy of βN. When (X ,G ) is
metrizable and (X ,G ) is tame then E = E (X ,G ) is a
Fréchet-Urysohn space, and every element p ∈ E is a limit of a
sequence of elements of G ,

p = lim
n→∞

gn.

Thus every p ∈ E (X ,G ) is a function of Baire class 1. (I.e. f ◦ p
is Baire class 1 for every f ∈ C (X ).)



Examples

Example

Let (X ,G ) be a point transitive system. Then the action of G on
X is equicontinuous if and only if K = E (X ,G ) is a compact
topological group whose action on X is jointly continuous and
transitive. It then follows that the system (X ,G ) is isomorphic to
the homogeneous system (K/H,G ), where H is a closed subgroup
of K and G embeds in K as a dense subgroup. When G is Abelian
H = {e} and E (X ,G ) = K .
A prototypical example of a minimal equicontinuous cascade is an
irrational rotation on the circle (T,Rα).



Example

Let G be a discrete group. We form the product space
Ω = {0, 1}G and let G act on Ω by translations:
(gω)(h) = ω(g−1h), ω ∈ Ω, g , h ∈ G . The corresponding
G -dynamical system (Ω,G ) is called the Bernoulli G -system. The
enveloping semigroup of the Bernoulli system (Ω,G ) is isomorphic
to the Stone-Čech compactification βG . To see this recall that the
collection {Ā : A ⊂ G} is a basis for the topology of βG consisting
of clopen sets. Next identify Ω = {0, 1}G with the collection of
subsets of G in the obvious way: A←→ 1A. Now define an
“action” of βG on Ω by:

p ∗ A = {g ∈ G : g−1p ∈ A−1}.

It is easy to check that this action extends the action of G on Ω
and defines an isomorphism of βG onto E (Ω,G ).



The structure theorem for minimal tame systems

Theorem: [Gl-18] For a general topological group G , a tame,
metric, minimal dynamical system (X ,G ) has the following
structure:

X̃

π

��

η

��

X ∗
θ∗oo

ι
��

π∗

��

X Z

σ
��

Y Y ∗
θ

oo

Here (i) X̃ is a metric minimal and tame system (ii) η is a strongly
proximal extension, (iii) Y is a strongly proximal system, (iv) π is a
point distal extension and has a unique RIM (relatively invariant
measure), (v) θ, θ∗ and ι are almost one-to-one extensions, and
(vi) σ is an isometric extension.



When the map π is also open this diagram reduces to

X̃
η

��
ι
��

π

~~

X Z

σ
��
Y

In general the presence of the strongly proximal extension η is
unavoidable. If the system (X ,G ) admits an invariant measure µ
then Y is trivial and X = X̃ is an almost automorphic system:

X
ι→ Z ,

where ι is an almost one-to-one extension and Z is equicontinuous.
Moreover, µ is unique and ι is a measure theoretical isomorphism
ι : (X , µ,G )→ (Z , λ,G ), with λ the Haar measure on Z . Thus,
this is always the case when G is amenable.



Corollary

A minimal tame system (X ,G ) with G amenable has zero
topological entropy.

The minimality assumption is superfluous. However, a different
kind of machinery is needed in order to prove that fact. This
involves combinatorial characterizations of positive entropy
(Glasner-Weiss, [GW-95]) and of tameness (Kerr-Li, [KL-07]),
which unfortunately, for lack of time, we are not able to describe
here.



In a recent work by Fuhrmann, Glasner, Jäger and Oertel
[FGJO-21], we show additionally that, with ι : X → Z denoting the
almost one-to-one extension over the equicontinuous factor, the
unique invariant measure µ of X is supported on the dense Gδ
subset X0 ⊂ X , where π is one-to-one:

µ({x ∈ X : ι−1(ι(x)) = {x}}) = 1.

Such an almost automorphic system is called regular.



Some words about the proof of the structure
theorem

An essential ingredient of the proof is the following simple fact:

Proposition

Let (X ,G ) be a metric tame dynamical system. Let M(X ) denote
the compact convex set of probability measures on X (with the
weak∗ topology). Then each element p ∈ E (X ,G ) defines an
element p∗ ∈ E (M(X ),G ) and the map p 7→ p∗ is both a
dynamical system and a semigroup isomorphism of E (X ,G ) onto
E (M(X ),G ).



Proof.
Since E (X ,G ) is Fréchet we have for every p ∈ E a sequence
gi → p of elements of G converging to p. Now for every f ∈ C (X )
and every probability measure ν ∈ M(X ) we get by the Riesz
representation theorem and Lebesgue’s dominated convergence
theorem

giν(f ) = ν(f ◦ gi )→ ν(f ◦ p) := p∗ν(f ).

Since the Baire class 1 function f ◦ p is well defined and does not
depend upon the choice of the convergent sequence gi → p, this
defines the map p 7→ p∗ uniquely. It is easy to see that this map is
an isomorphism of dynamical systems, whence a semigroup
isomorphism. As X ∼= {δx : x ∈ X} ⊂ M(X ), this map is an
injection.
Finally as G is dense in both enveloping semigroups, it follows that
this isomorphism is onto.



On the classification of tame systems

We now assume that our (usually metrizable) dynamical system
(X ,G ) is tame and we ask how complicated is the Fréchet
topology on E (X ,G ). One would expect to see a strong
correlation between the complexity of this topology and that of the
dynamics of (X ,G ).
The simplest behavior occurs when E (X ,G ) is metrizable. Recall
that a dynamical system is non-sensitive if, for every ε > 0 there
exists a non-empty open set O ⊂ X such that for every g ∈ G the
set gO has d-diameter < ε. A system (G ,X ) is hereditarily
non-sensitive (HNS) if all its subsystems are non-sensitive. The
following theorem is by Glasner, Megrelishvili and Uspenskij.



Theorem (GMU-08)

A metrizable dynamical system (X ,G ) has a metrizable enveloping
semigroup iff it is HNS.



A Sturmian sequence over (T,Rθ). Wikipedia By Siefkenj



Example (Sturmian systems)

The Sturmian system is defined as the orbit closure in the
Bernoulli system Ω = {0, 1}Z of the Sturmian sequence.

A Sturmian system is tame but not HNS. Its enveloping semigroup
is homeomorphic to Z ∪DA, where DA is the double arrow space,
which is not metrizable.

Note that indeed every Sturmian cascade is an almost one-to-one
extension of its largest equicontinuous factor (T,Rα). However,
there are many cascades which have this structure (i.e. they are
almost automorphic) which are not even tame; e.g. such a system
can have positive entropy.



Example (A generalized Sturmian system)

Let α = (α1, . . . , αd) be a vector in Rd , d ≥ 2 with 1, α1, . . . , αd

independent over Q. Consider the minimal equicontinuous
dynamical system (Y ,Rα), where Y = Td = Rd/Zd (the d-torus)
and Rαy = y + α. Let D be a small closed d-dimensional ball in
Td and let C = ∂D be its boundary, a (d − 1)-sphere. Fix
y0 ∈ intD and let X = X (D, y0) be the symbolic system generated
by the function x0 ∈ {0, 1}Z defined by

x0(n) = χD(Rn
αy0) and set X = Oσx0 ⊂ {0, 1}Z,

where σ denotes the shift transformation. It is not hard to check
that the system (σ,X ) is minimal and admits (Y ,Rα) as an almost
1-1 factor:

π : (X , σ)→ (Y ,Rα, ).



Theorem
There exists a ball D ⊂ Td as above such that the corresponding
symbolic dynamical system (X , σ) is tame. For such D we then
have a precise description of E (X , σ) \ Z as the product set
Td ×F , where F is the collection of ordered orthonormal bases for
Rd .



The following definitions were introduced in [GM-22]:

Definition
Let (X ,G ) be a tame dynamical system. We say that this system
is:

(1) tame1 if E (X ,G ) is first countable;

(2) tame2 if E (X ,G ) is hereditarily separable.

The corresponding classes will be denoted by Tame1 and Tame2

respectively. It our work we show that the following strict
inclusions hold:

Equicontinuous ⊂ HNS ⊂ Tame2 ⊂ Tame1 ⊂ Tame.



This hierarchy arises naturally from deep results of Todorc̆ević and
Argyros–Dodos–Kanellopoulos about separable Rosenthal
compacta ([T-99], [ADK-08]).



Theorem (Todorc̆ević’ trichotomy)

Let K be a non-metrizable separable Rosenthal compactum. Then
K satisfies exactly one of the following alternatives:

(0) K is not first countable (it then contains a copy of A(c), the
Alexandroff compactification of a discrete space of size
continuum).

(1) K is first countable but K is not hereditarily separable (it then
contains either a copy of D({0, 1}N), the Alexandroff
duplicate of the Cantor set, or D̂(S({0, 1}N)), the extended
duplicate of the split Cantor set).

(2) K is hereditarily separable and non-metrizable (it then
contains a copy of the double arrow).



Examples

By results of Ellis [Ellis-61], Akin [Akin-98] and [GM-06] we have
the following examples:

Examples

(0) The action of the group G = GL(d ,R) on the projective
space Pd−1, d ≥ 2, is tame and the corresponding enveloping
semigroup E (Pd−1,G ) is not first countable (i.e. tame but
not tame1).

(1) The action of G = GL(d ,R) on the sphere Sd−1 is tame1 but
not tame2.

(2) The Sturmian and the generalized Sturmian cascades are
tame2 but not HNS.



Some ideas of the proofs

Proposition

Let X be a set, (Y , d) a metric space, and E ⊂ Y X a compact
subspace in the pointwise convergence topology. The following
conditions are equivalent:

1. A point p ∈ E admits a countable local basis in E .

2. There is a countable set C ⊂ X which determines p in E ,
that is, for any q ∈ E , the condition q(c) = p(c) for all c ∈ C
implies that q(x) = p(x) for every x ∈ X .



Let (X ,G ) be a dynamical system with enveloping semigroup
E = E (X ,G ). We call an element p ∈ E a parabolic idempotent
with target x0 if there is a point x0 ∈ X such that
px = x0, ∀x ∈ X , and a loxodromic idempotent with target
(x0, x1) if there are distinct points x0, x1 ∈ X with
px = x0, ∀x ∈ X \ {x1} and px1 = x1. We say that x0 and x1 are
the attracting and repulsing points of p respectively. Clearly, if
(X ,G ) admits a parabolic idempotent, it is necessarily a proximal
system and therefore contains a unique minimal set Z ⊆ X .
Conversely, if (X ,G ) is a proximal system then every minimal
idempotent is parabolic with target at the unique minimal subset
of X .



Proposition

Let (X ,G ) be a proximal dynamical system. Let Z ⊂ X be its
(necessarily unique) minimal subset.

1. Suppose that there is an uncountable set B ⊂ X such that for
each b ∈ B there is a loxodromic idempotent pb with target
(ab, b), with b as the repulsing point and ab ∈ Z the
attracting point, such that b 6= ab. Then E (X ,G ) contains
the uncountable discrete subset {pb : b ∈ B}, hence it is not
hereditarily separable.

2. Suppose there is a point a ∈ Z and an uncountable set of
points B = {bν} ⊂ X \ {a} such that each pair (a, bν) is the
target pair of a loxodromic idempotent p(a,bν) with attracting
point a and a repulsing point bν . Then the parabolic
idempotent pa defined by pax = a, ∀x ∈ X , does not admit a
countable basis for its topology, hence E (X ,G ) is not first
countable.



Proof.
(1) Straightforward.
(2) Assuming otherwise, in view of the above Lemma, there is a
countable set C ⊂ X such that for any q ∈ E (X ,G ), if qc = pac
for every c ∈ C then q = pa. Now the set B is uncountable and we
can choose an element bν ∈ B \ C . It then follows that for every
c ∈ C we have

p(a,bν)c = pac = a,

but nonetheless p(a,bν)bν = bν 6= a = pabν . Thus p(a,bν) 6= pa, a
contradiction.

Corollary

The action of a hyperbolic group G on its Gromov boundary
∂G is tame but not tame1.



Example

Example (Dynkin and Maljutov - 1961)

The free group F2 on two generators, say a and b, is hyperbolic
and its boundary can be identified with the compact metric space
Ω (a Cantor set) of all the one-sided infinite reduced words w on
the symbols a, b, a−1, b−1. The group action is

F2 × Ω→ Ω, (γ,w) = γ · w ,

where γ · w is obtained by concatenation of γ (written in its
reduced form) and w and then performing the needed cancelations.
The resulting dynamical system is minimal, strongly proximal, and
tame and the enveloping semigroup E (Ω,F2) is Fréchet-Urysohn
but not first countable.



The β-rank of a tame dynamical system

Let (X ,G ) be a metric dynamical system, p ∈ E (X ,G ) define the
the oscillation function of p at x ∈ X as

osc (p, x) = inf{ sup
x1,x2∈V

d(px1, px2) : V ⊂ X open , x ∈ V },

and for A ⊂ X with x ∈ A, osc (p, x ,A) = osc (p � A, x).
Consider, for each ε > 0, the derivative operation

A 7→ A′ε,p = {x ∈ A : osc (p, x ,A) ≥ ε}

and by iterating define Aαε,p for α < ω1.



Let

β(p, ε,A) =

{
least ordinal α with Aαε,p = ∅, if such an α exists

ω1 otherwise.

Set β(p, ε) = β(p, ε,X ) and define the oscillation rank

β(p) = sup
ε>0

β(p, ε).

Finally define the β-rank of the system (X ,G ) as the ordinal

β(X ,G ) = sup{β(p) : p ∈ E}.



Via theorems of Bourgain [Bour-80] and Kechris-Louveau [KL-90]
we deduce the following:

Theorem
For every metric tame dynamical system (X ,T ) we have
β(X ,T ) < ω1.

Examples

1. For the Sturmian system we have β(X ,T ) = 2.

2. The Dynkin-Maljutov system (Ω,F2) has β-rank 2.



Question
Is there, for every ordinal α < ω1, a tame metric system (X ,G )
with β(X ,G ) = α ?

Presently I don’t even have an example where β(X ,G ) = 3 (maybe
this is just a good exercise?).
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