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Hajnal–Juhász’ and Arhangel′skĭı’s inequalities

Two of the most celebrated cardinal inequalities in the theory
of cardinal functions are the Hajnal–Juhász’ inequality and
Arhangel′skĭı’s inequality:

Theorem: [Hajnal–Juhász, 1967] If X is a Hausdorff space,
then

|X | ≤ 2χ(X )c(X ),

where χ(X ) is the character and c(X ) is the cellularity of X .

Theorem: [Arhangel′skĭı’s, 1969] If X is a Hausdorff space,
then

|X | ≤ 2χ(X )L(X ),

where L(X ) is the Lindelöf degree of X .

Ivan S. Gotchev Cardinal Inequalities for topological spaces



Some well-known cardinal inequalities
Equivalent forms of Pospǐsil’s inequality
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Arhangel′skĭı’s inequality:

Theorem: [Hajnal–Juhász, 1967] If X is a Hausdorff space,
then

|X | ≤ 2χ(X )c(X ),

where χ(X ) is the character and c(X ) is the cellularity of X .
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Pospǐsil’s inequality

The two inequalities are important, in particular, because they
show that the two pairs of cardinal functions L(X ) and χ(X ),
and c(X ) and χ(X ), respectively, are sufficient to give an
upper bound for the cardinality of a Hausdorff topological
space.

But even Pospǐsil’s inequality from 1937 gives a lower upper
bound for the cardinality of a Hausdorff space X than
Hajnal–Juhász’ and Arhangel′skĭı’s inequalities.

Theorem: [Pospǐsil, 1937] If X is a Hausdorff space, then

|X | ≤ d(X )χ(X ),

where d(X ) is the density and χ(X ) is the character of X .
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Pospǐsil’s inequality

Here is how one can see that Pospǐsil’s inequality gives a lower
upper bound for the cardinality of a space X than
Hajnal–Juhász’ and Arhangel′skĭı’s inequalities.

d(X )χ(X ) ≤ |X |χ(X ) ≤ (2χ(X )c(X ))χ(X ) = 2χ(X )c(X ),

d(X )χ(X ) ≤ |X |χ(X ) ≤ (2χ(X )L(X ))χ(X ) = 2χ(X )L(X ).

Example: If X = R, where R has the discrete topology, then
Hajnal–Juhász’ and Arhangel′skĭı’s inequalities give the
following estimate: |X | ≤ 2c·ω = 2c,

while Pospǐsil’s inequality gives |X | ≤ cω = c.
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Bella and Cammaroto’s inequality

Therefore, every improvement of Pospǐsil’s inequality is an
improvement of Hajnal–Juhász’ and Arhangel′skĭı’s
inequalities. There are many such improvements in the
literature. Here I will mention only a few of them.

Theorem: [Bella and Cammaroto, 1988] If X is a Hausdorff
space, then

|X | ≤ dθ(X )χ(X ),

where dθ(X ) is the θ-density of X .

Since dθ(X ) ≤ d(X ) for every space X , Bella and
Cammaroto’s inequality is a formal generalization of Pospǐsil’s
inequality.
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A new generalization of Pospǐsil’s inequality

Theorem: [G–Tkachuk, 2022] If X is a Urysohn space, then

|X | ≤ dθ(X )πχ(X )ψθ2 (X ),

where πχ(X ) is the π-character of X .

Since πχ(X )ψθ2(X ) ≤ χ(X ) for every Urysohn space X , the
above inequality is a generalization of Pospǐsil’s inequality.

Corollary: If X is a Urysohn space, then

d(X )χ(X ) = dθ(X )χ(X ).
Proof:

d(X )χ(X ) ≤ |X |χ(X ) ≤ (dθ(X )πχ(X )ψθ2 (X ))χ(X ) ≤ dθ(X )χ(X ).

Therefore Bella and Cammaroto’s inequality is equivalent to
Pospǐsil’s inequality for Urysohn spaces.
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Willard and Dissanayake’s inequality

Theorem: [Willard and Dissanayake, 1984] If X is a
Hausdorff space, then

|X | ≤ d(X )πχ(X )ψc (X ).

Proposition: If X is a Urysohn space, then

d(X )πχ(X )ψc (X ) ≤ dθ(X )πχ(X )ψθ2 (X ).

Proof:

d(X )πχ(X )ψc (X ) ≤ |X |πχ(X )ψc (X ) ≤ (dθ(X )πχ(X )ψθ2 (X ))πχ(X )ψc (X )

≤ dθ(X )πχ(X )ψθ2 (X ).

Therefore G–T inequality mentioned before is not better than
Willard and Dissanayake’s inequality but it was useful to show
that d(X )χ(X ) = dθ(X )χ(X ) for every Urysohn space X .
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G., Tkachenko and Tkachuk’s inequalitiy
Further improvements

Bella and Cammaroto’s inequality
Gotchev–Tkachuk’s inequality
Willard and Dissanayake’s inequality

Willard and Dissanayake’s inequality

Theorem: [Willard and Dissanayake, 1984] If X is a
Hausdorff space, then

|X | ≤ d(X )πχ(X )ψc (X ).

Proposition: If X is a Urysohn space, then

d(X )πχ(X )ψc (X ) ≤ dθ(X )πχ(X )ψθ2 (X ).

Proof:

d(X )πχ(X )ψc (X ) ≤ |X |πχ(X )ψc (X ) ≤ (dθ(X )πχ(X )ψθ2 (X ))πχ(X )ψc (X )

≤ dθ(X )πχ(X )ψθ2 (X ).

Therefore G–T inequality mentioned before is not better than
Willard and Dissanayake’s inequality but it was useful to show
that d(X )χ(X ) = dθ(X )χ(X ) for every Urysohn space X .

Ivan S. Gotchev Cardinal Inequalities for topological spaces



Some well-known cardinal inequalities
Equivalent forms of Pospǐsil’s inequality
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Inequalities with Shanin’s number

Theorem: [G–Tkachuk, 2022] If either
max{πχ(X ), ψc(X )} ≥ sh(X ) or 2sh(X ) = sh(X )+ for a
Hausdorff space X , then |X | ≤ sh(X )πχ(X )·ψc (X ).

Corollary: Under GCH, if X is a Hausdorff space, then we
have the equality d(X )πχ(X )·ψc (X ) = sh(X )πχ(X )·ψc (X ).

Therefore, under GCH, the inequality |X | ≤ sh(X )πχ(X )·ψc (X ) is
an equivalent form of the result of Willard and Dissanayake.

Corollary: Under GCH, if X is a Hausdorff space, then we
have the equality d(X )χ(X ) = sh(X )χ(X ).

Therefore, under GCH, the inequality |X | ≤ sh(X )χ(X ) is an
equivalent form of Pospǐsil’s inequality.
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an equivalent form of the result of Willard and Dissanayake.

Corollary: Under GCH, if X is a Hausdorff space, then we
have the equality d(X )χ(X ) = sh(X )χ(X ).
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equivalent form of Pospǐsil’s inequality.
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Inequalities with the π-weight

Observation: If X is an infinite Hausdorff space, then
d(X )πχ(X )·ψc (X ) = πw(X )πχ(X )·ψc (X ).
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Corollary: Under GCH, if X is a Hausdorff space, then we
have the equality sh(X )χ(X ) = πw(X )χ(X ).
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More inequalities with Shanin’s number

Theorem: [G–Tkachuk, 2022] If either
max{πχ(X ), t(X )} ≥ sh(X ) or 2sh(X ) = sh(X )+ for a regular
Hausdorff space X , then d(X ) ≤ sh(X )πχ(X )·t(X ).

Corollary: Under GCH, if X is a regular Hausdorff space, then
we have the inequality d(X ) ≤ sh(X )πχ(X )·t(X ).

Theorem: [Angelo Bella, 2022] If either πχ(X ) ≥ sh(X ) or
2sh(X ) = sh(X )+ for a regular Hausdorff space X , then
d(X ) ≤ sh(X )πχ(X ).

Corollary: Under GCH, if X is a regular Hausdorff space, then
we have the inequality d(X ) ≤ sh(X )πχ(X ).
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G., Tkachenko and Tkachuk’s inequalitiy
Further improvements

Bella and Cammaroto’s inequality
Gotchev–Tkachuk’s inequality
Willard and Dissanayake’s inequality

Is d(X ) ≤ c(X )πχ(X )?

In 1978, Fleissner showed that there is a model of ZFC in
which GCH holds and there exists a completely regular space
X such that |X | = ω2, c(X ) = ω1 and χ(X ) = ω, and in that
way refuting the conjecture that |X | ≤ c(X )χ(X ) for every
Hausdorff topological space X .

For the same space we have also sh(X ) = d(X ) = ω2, hence
d(X ) > c(X )χ(X ).

Therefore, the answer of the above question is negative.
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Šapirovskĭı’s inequality

In 1974, Šapirovskĭı improved Hajnal and Juhász inequality for
the class of regular T1-spaces by replacing χ(X ) with the
pseudocharacter ψ(X ) and including in the inequality another
cardinal function πχ(X ) – the π-character of X .

Theorem: [Šapirovskĭı, 1974] If X is a regular T1-space, then
|X | ≤ πχ(X )c(X )ψ(X ).

Notice that Šapirovskĭı’s inequality also overestimates the
cardinality of the discrete space R.
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Šapirovskĭı’s inequality
Sun’s inequality
o-tightness
GTT’s inequality
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Sun’s inequality

In 1988, Sun generalized Šapirovskĭı’s and Hajnal and Juhász
inequality for the class of all Hausdorff spaces by replacing the
pseudocharacter ψ(X ) in Šapirovskĭı’s inequality with the
closed pseudocharacter ψc(X ).

Theorem: [Sun, 1988] If X is a Hausdorff space, then
|X | ≤ πχ(X )c(X )ψc (X ).
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G., Tkachenko and Tkachuk’s inequalitiy
Further improvements
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inequality for the class of all Hausdorff spaces by replacing the
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closed pseudocharacter ψc(X ).

Theorem: [Sun, 1988] If X is a Hausdorff space, then
|X | ≤ πχ(X )c(X )ψc (X ).

Ivan S. Gotchev Cardinal Inequalities for topological spaces



Some well-known cardinal inequalities
Equivalent forms of Pospǐsil’s inequality
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Sun’s inequality

Since for regular spaces ψc(X ) = ψ(X ), Sun’s inequality
implies Šapirovskĭı’s inequality.

Also, notice that πχ(X ) ≤ χ(X ) < 2c(X )χ(X ), and
ψc(X ) ≤ χ(X ) and therefore

πχ(X )c(X )ψc (X ) ≤ (2c(X )χ(X ))c(X )ψc (X ) = 2c(X )χ(X ),
and therefore Šapirovskĭı’s and Sun’s inequalities improve
Hajnal and Juhász’ inequality.

Example: If X = N ∪ {x}, where x ∈ βN \ N, then
|X | = πχ(X ) = c(X ) = ψc(X ) = ω, χ(X ) = c and therefore
πχ(X )c(X )ψc (X ) = ωω·ω = 2ω = c while 2c(X )χ(X ) = 2ω·c = 2c.

Finally, notice that Sun’s inequality again overestimates the
cardinality of the discrete space R.
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Šapirovskĭı’s inequality
Sun’s inequality
o-tightness
GTT’s inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The o-tightness of a space X
does not exceed κ, or ot(X ) ≤ κ, if for every family U of open
subsets of X and for every point x ∈ X with x ∈

⋃
U there

exists a subfamily V ⊂ U such that |V| ≤ κ and x ∈
⋃
V .

We note that ot(X ) ≤ c(X ) and ot(X ) ≤ t(X ) for any space
X , where t(X ) is the tightness of X .

There are example of spaces where ot(X ) < c(X ) (e.g.
discrete space with cardinality c) and ot(X ) < t(X ) (e.g. the
Tychonoff cube [0, 1]c).

Ivan S. Gotchev Cardinal Inequalities for topological spaces



Some well-known cardinal inequalities
Equivalent forms of Pospǐsil’s inequality
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Šapirovskĭı’s inequality
Sun’s inequality
o-tightness
GTT’s inequality

Definition of o-tightness

Definition: [Tkachenko – 1983] The o-tightness of a space X
does not exceed κ, or ot(X ) ≤ κ, if for every family U of open
subsets of X and for every point x ∈ X with x ∈

⋃
U there

exists a subfamily V ⊂ U such that |V| ≤ κ and x ∈
⋃
V .

We note that ot(X ) ≤ c(X ) and ot(X ) ≤ t(X ) for any space
X , where t(X ) is the tightness of X .

There are example of spaces where ot(X ) < c(X ) (e.g.
discrete space with cardinality c) and ot(X ) < t(X ) (e.g. the
Tychonoff cube [0, 1]c).

Ivan S. Gotchev Cardinal Inequalities for topological spaces



Some well-known cardinal inequalities
Equivalent forms of Pospǐsil’s inequality
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G., Tkachenko and Tkachuk’s inequalitiy

In 2016, with Tkachenko and Tkachuk we strengthened Sun’s
inequality by replacing c(X ) with ot(X ) and πχ(X ) with
πw(X ) – the π-weight of X .

Theorem: [G., Tkachenko, Tkachuk – 2016] If X is a
Hausdorff space, then |X | ≤ πw(X )ot(X )ψc (X ).

Since for every space X we have πw(X ) = πχ(X ) · d(X ), the
above inequality could be restated as follows:

Theorem: [G., Tkachenko, Tkachuk – 2016] If X is a
Hausdorff space, then |X | ≤ (πχ(X ) · d(X ))ot(X )ψc (X ).
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G., Tkachenko and Tkachuk’s inequalitiy

The following chain of inequalities confirms that GTT’s
inequality is at least as good as Sun’s inequality.

πw(X )ot(X )ψc (X ) = (πχ(X ) · d(X ))ot(X )ψc (X ) ≤
≤ (πχ(X ) · |X |)c(X )ψc (X ) ≤
≤ (πχ(X ) · πχ(X )c(X )ψc (X ))c(X )ψc (X ) = πχ(X )c(X )ψc (X ).

Example: If X = R, where R has the discrete topology, then
GTT’s inequality gives the following estimate: |X | ≤ cω·ω = c,
while Sun’s inequality, as we have already observed, gives
|X | ≤ 2c.

Therefore, GTT’s inequality is strictly stronger than Sun’s
inequality.
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G., Tkachenko and Tkachuk’s inequalitiy
Further improvements
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G., Tkachenko and Tkachuk’s inequalitiy
Further improvements
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G., Tkachenko and Tkachuk’s inequalitiy

We note also that GTT’s inequality improves and Pospǐsil’s
inequality as it is shown by the following:

πw(X )ot(X )ψc (X ) ≤ πw(X )χ(X ) = d(X )χ(X ).

Example: If X = N ∪ {x}, where x ∈ βN \ N, then
|X | = πχ(X ) = ot(X ) = d(X ) = ψc(X ) = ω, χ(X ) = c and
therefore πw(X )ot(X )ψc (X ) = (ω · ω)ω·ω = 2ω = c, while
d(X )χ(X ) = ωc = 2c.

Therefore, GTT’s inequality is strictly stronger than Pospǐsil’s
inequality, and therefore, it is stronger also than Arhangel′skĭı’s
and Hajnal–Juhász’ inequalities.
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Šapirovskĭı’s inequality
Sun’s inequality
o-tightness
GTT’s inequality

G., Tkachenko and Tkachuk’s inequalitiy

We note also that GTT’s inequality improves and Pospǐsil’s
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inequality, and therefore, it is stronger also than Arhangel′skĭı’s
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Dense o-tightness
A new cardinal inequality

Definition of dense o-tightness

Definition: [G., Tkachenko, Tkachuk – 2016] We say that
the dense o-tightness of a space X does not exceed κ, or
dot(X ) ≤ κ, if for every family U of open subsets of X whose
union is dense in X and for every point x ∈ X there exists a
subfamily V ⊂ U such that |V| ≤ κ and x ∈

⋃
V .

We note that dot(X ) ≤ πχ(X ), dot(X ) ≤ ot(X ) and therefore
dot(X ) ≤ c(X ) for any space X .

Example: [GTT – 2016] For every infinite cardinal κ, there
exists a compact Hausdorff space X such that
dot(X ) = κ < min{ot(X ), πχ(X )}. This difference could be
arbitrarily large for non-compact spaces.
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A new cardinal inequality

Theorem: [G. – 2022] If X is a Hausdorff space, then

|X | ≤ πw(X )dot(X )·ψc (X ).

Since for every space X we have dot(X ) ≤ ot(X ),
πw(X )dot(X )·ψc (X ) ≤ πw(X )ot(X )·ψc (X ).

Also, since for every space X we have dot(X ) ≤ πχ(X ),
πw(X )dot(X )·ψc (X ) ≤ (d(X ) · πχ(X ))πχ(X )·ψc (X ) =
d(X )πχ(X )·ψc (X ).

Thus, our new inequality improves GTT’s and Willard and
Dissanayake’s inequalities, and therefore it gives either the
same or a better upper bound for the cardinality of a Hausdorff
space than Sun’s, Šapirovskĭı’s, Pospǐsil’s, Hajnal–Juhász’ and
Arhangel′skĭı’s inequalities mentioned before.
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The End

THANK YOU!
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