
Ramsey theorem for trees with a successor operation

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Joint work with Martin Balko, Natasha Dobrinen, David Chodounský, Matěj Konečný, Jaroslav
Nešetřil, Lluis Vena, Andy Zucker

Toposym 2022, Prague



Known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages



Known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in finite binary
laguages

Binary structures
with unaries
(bipartite graphs)



Known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in finite binary
laguages

Binary structures
with unaries
(bipartite graphs)

Free amalgamation
in finite binary laguages
finitely many cliques

Triangle–free graphs
Coding
trees and
forcing

Kk -free
graphs,
k > 3

SDAP



Known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in finite binary
laguages

Binary structures
with unaries
(bipartite graphs)

Free amalgamation
in finite binary laguages
finitely many cliques

Triangle–free graphs
Coding
trees and
forcing

Product Milliken Tree Theorem

Random structures
in finite language

Kk -free
graphs,
k > 3

SDAP



Known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in finite binary
laguages

Binary structures
with unaries
(bipartite graphs)

Free amalgamation
in finite binary laguages
finitely many cliques

Triangle–free graphs

Partial orders

Generalised
metric
spaces

Coding
trees and
forcing

Carlson–Simpson
Theorem

Product Milliken Tree Theorem

Random structures
in finite language

Kk -free
graphs,
k > 3

SDAP



All enumerations tree



All enumerations tree



All enumerations tree



S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:

S1 If S(a, p̄, c) is defined, then S(a, p̄, c) is an immediate successor of a and all nodes in
p̄ have levels at most ℓ(a)− 1.

S2 Injectivity: If S(a, p̄, c) = S(b, q̄,d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.



S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined, then S(a, p̄, c) is an immediate successor of a and all nodes in

p̄ have levels at most ℓ(a)− 1.

S2 Injectivity: If S(a, p̄, c) = S(b, q̄,d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

p0

p1

a

S(a, (p0, p1), c)

r



S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined, then S(a, p̄, c) is an immediate successor of a and all nodes in

p̄ have levels at most ℓ(a)− 1.
S2 Injectivity: If S(a, p̄, c) = S(b, q̄,d), then a = b, p̄ = q̄ and c = d .

S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ
such that S(a|ℓ(a)−1, p̄, c) = a.



S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined, then S(a, p̄, c) is an immediate successor of a and all nodes in

p̄ have levels at most ℓ(a)− 1.
S2 Injectivity: If S(a, p̄, c) = S(b, q̄,d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

S(S(S(r , (), c) ...), ...

r



S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined, then S(a, p̄, c) is an immediate successor of a and all nodes in

p̄ have levels at most ℓ(a)− 1.
S2 Injectivity: If S(a, p̄, c) = S(b, q̄,d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0,1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (),0), (),1), (),0), (),1), (),1).



Level-decomposition

Definition (S-term)

Given an S-tree (T ,⪯,Σ,S), we call a term α an S-term if and only if α ∈ T , or
α = (β, (γ0, γ1, . . . , γn−1), c) where n ∈ ω, all of β, γ0, γ1 . . . γn−1 are S-terms and c ∈ Σ.

Definition (Level decomposition)

Let (T ,⪯,Σ,S) be an S-tree. Given a ∈ T and n < ω, the level n decomposition of a,
denoted by Dn(a), is an S-term defined recursively:

1 If ℓ(a) ≤ n, then Dn(a) = a.
2 For a = S(b, (p0, . . . ,pn−1), c) such that ℓ(a) > n, we let

Dn(a) = (Dn(b), (Dn(p0),Dn(p1), . . . ,Dn(pn−1)), c).

r

n
b

a = S(S(S(b, p̄, c), ...) ...) ...)

Dn(a) = (((b, p̄, c), ...) ...) ...)

Example

D1(001) = ((0, (),0), (),1).



Level-decomposition

Definition (S-term)

Given an S-tree (T ,⪯,Σ,S), we call a term α an S-term if and only if α ∈ T , or
α = (β, (γ0, γ1, . . . , γn−1), c) where n ∈ ω, all of β, γ0, γ1 . . . γn−1 are S-terms and c ∈ Σ.

Definition (Level decomposition)

Let (T ,⪯,Σ,S) be an S-tree. Given a ∈ T and n < ω, the level n decomposition of a,
denoted by Dn(a), is an S-term defined recursively:

1 If ℓ(a) ≤ n, then Dn(a) = a.
2 For a = S(b, (p0, . . . ,pn−1), c) such that ℓ(a) > n, we let

Dn(a) = (Dn(b), (Dn(p0),Dn(p1), . . . ,Dn(pn−1)), c).

Example

D1(001) = ((0, (),0), (),1).



Manipulating nodes
We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.



Manipulating nodes
We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level removal)

Given a ∈ T and n < ℓ(a), we let Rn(a) be a node b ∈ T satisfying Dn(b) = rn(Dn+1(a))
where rn is a function rn : T (n + 1) → T defined by rn(d) = d |n. If there is no such node b,
we say that Rn(a) is undefined.

r

n
b

a = S(S(S(b, p̄, c), ...) ...) ...)

Rn(a) = S(S(S(b′, p̄, c), ...) ...) ...)

b′

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.



Manipulating nodes
We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level removal)

Given a ∈ T and n < ℓ(a), we let Rn(a) be a node b ∈ T satisfying Dn(b) = rn(Dn+1(a))
where rn is a function rn : T (n + 1) → T defined by rn(d) = d |n. If there is no such node b,
we say that Rn(a) is undefined.

Example (R1(101) = 11)

D2(101) = (10, (),1),
r1(10) = 10|1 = 1,

r1(D2(101)) = r1((10, (),1)) = (r1(10), (),1) = (1, (),1) = D1(11).

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.



Manipulating nodes
We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.



Manipulating nodes
We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.

r

n

C n
m(a)

b

m



Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

f

a

S(a, p̄, 0)S(a, p̄, 1)

b c
f (a)

f (b) f (c)

S(f (a), f (p̄), 0) S(f (a), f (p̄), 0)

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T ,n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω,g ∈ Shape(T (≤n),T ) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T ) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T )) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T ), there exists
F ∈ Shape(T ,T ) such that χ is constant when restricted to Shape(T (≤k),F [T ]).



Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T ,n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω,g ∈ Shape(T (≤n),T ) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T ) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T )) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T ), there exists
F ∈ Shape(T ,T ) such that χ is constant when restricted to Shape(T (≤k),F [T ]).



Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T ,n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω,g ∈ Shape(T (≤n),T ) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T ) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T )) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T ), there exists
F ∈ Shape(T ,T ) such that χ is constant when restricted to Shape(T (≤k),F [T ]).



Ramsey theorem for shape-preserving functions

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T ,n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω,g ∈ Shape(T (≤n),T ) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T ) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T )) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T ), there exists
F ∈ Shape(T ,T ) such that χ is constant when restricted to Shape(T (≤k),F [T ]).



Proof outline (5 pages)

1 Pigeonhole:

1 One-dimensional pigeonhole: either by application of the Hales-Jewett theorem or using
ultrafilters

2 Infinite-dimensional pigeonhole: combinatorial forcing inspired by proof by Karagianlis

2 Coloring subtrees of a given finite size:
Analogous fussion argument as in the proof of Milliken’s tree theorem



Proof outline (5 pages)

1 Pigeonhole:
1 One-dimensional pigeonhole: either by application of the Hales-Jewett theorem or using

ultrafilters

2 Infinite-dimensional pigeonhole: combinatorial forcing inspired by proof by Karagianlis

2 Coloring subtrees of a given finite size:
Analogous fussion argument as in the proof of Milliken’s tree theorem



Proof outline (5 pages)

1 Pigeonhole:
1 One-dimensional pigeonhole: either by application of the Hales-Jewett theorem or using

ultrafilters
2 Infinite-dimensional pigeonhole: combinatorial forcing inspired by proof by Karagianlis

2 Coloring subtrees of a given finite size:
Analogous fussion argument as in the proof of Milliken’s tree theorem



Proof outline (5 pages)

1 Pigeonhole:
1 One-dimensional pigeonhole: either by application of the Hales-Jewett theorem or using

ultrafilters
2 Infinite-dimensional pigeonhole: combinatorial forcing inspired by proof by Karagianlis

2 Coloring subtrees of a given finite size:
Analogous fussion argument as in the proof of Milliken’s tree theorem



Proof outline (5 pages)

1 Pigeonhole:
1 One-dimensional pigeonhole: either by application of the Hales-Jewett theorem or using

ultrafilters
2 Infinite-dimensional pigeonhole: combinatorial forcing inspired by proof by Karagianlis

2 Coloring subtrees of a given finite size:
Analogous fussion argument as in the proof of Milliken’s tree theorem



Application to free amalgamation classes

We want to give non-forcing proof of:

Theorem (Zucker 2020+)

Let L be a finite binary language and F a finite family of irreducible L-structures. Then
every countable universal F-free structure has finite big Ramsey degrees.

We fix family F . Examples are for F = {K4}.



All enumerations tree



Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.



Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

A

New vertex:



Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

A

New vertex:



Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

A B

New vertex:



Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

flA(4) = 2

A B P

New vertex:



Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

flA(4) = 2

A B P E

New vertex:



Constructing all enumeration tree

Definition (Type)

Type of level n is an F-free L-structure A with vertices {0,1, . . . ,n − 1, t}, where t is the
type vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

flA(4) = 2

A B P E

New vertex:

S(A, (P),E)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.

3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property

6 Define structure on nodes of the S-tree and verify that shape-preserving functions
preserve the structure

7 Verify that envelopes are bounded for nice copies inside nice enumerations (same
was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure

7 Verify that envelopes are bounded for nice copies inside nice enumerations (same
was as in Zucker’s paper)



Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)



More general result

Theorem

Let L be a finite language consisting of unary and binary symbols, and let K be a
hereditary class of finite structures and k ≥ 2. Assume that every countable structure A
has a completion to K provided that every induced cycle in A (seen as a substructure) has
a completion in K and every irreducible substructure of A of k embeds into K. Then K has
a Fraïssé limit with finite big Ramsey degrees.

This result can be used to analyze all Cherlin’s catalogues of binary homogeneous
structures except for those described by infinitely many forbidden cliques (Henson graphs).

Open problem: Dpes class of all finite structures omitting the following substructure have
finite big Ramsey degrees?



More general result

Theorem

Let L be a finite language consisting of unary and binary symbols, and let K be a
hereditary class of finite structures and k ≥ 2. Assume that every countable structure A
has a completion to K provided that every induced cycle in A (seen as a substructure) has
a completion in K and every irreducible substructure of A of k embeds into K. Then K has
a Fraïssé limit with finite big Ramsey degrees.

This result can be used to analyze all Cherlin’s catalogues of binary homogeneous
structures except for those described by infinitely many forbidden cliques (Henson graphs).

Open problem: Dpes class of all finite structures omitting the following substructure have
finite big Ramsey degrees?



Thank you for the attention
1 D. Devlin: Some partition theorems and ultrafilters on ω, PhD thesis, Dartmouth College, 1979.

See also: S. Todorcevic: Introduction to Ramsey Spaces.
2 C. Laflamme, N. Sauer, V. Vuksanovic: Canonical partitions of universal structures,

Combinatorica 26 (2) (2006), 183–205.
3 N. Dobrinen, The Ramsey theory of the universal homogeneous triangle-free graph, Journal of

Mathematical Logic 2020.
4 N. Dobrinen, The Ramsey Theory of Henson graphs, arXiv:1901.06660 (2019).
5 A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.
6 N. Dobrinen: The Ramsey theory of the universal homogeneous triangle-free graph Part II:

Exact big Ramsey degrees, arXiv:2009.01985.
7 R. Coulson, N. Dobrinen, R. Patel: The Substructure Disjoint Amalgamation Property implies

big Ramsey structures, arXiv:2010.02034.
8 J.H.: Big Ramsey degrees using parameter spaces, arXiv:2009.00967.
9 M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, L. Vena, A. Zucker: Exact big

Ramsey degrees via coding trees, arXiv:2110.08409 (2021).
10 M. Balko, D. Chodounský, J.H., M. Konečným J. Nešetřil, L. Vena: Big Ramsey degrees and

forbidden cycles, Extended Abstracts EuroComb 2021.
11 M. Balko, D. Chodounský, N. Dobrinen, J.H., M. Konečný, J. Nešetřil, L. Vena, A. Zucker: Big

Ramsey degrees of the generic partial order, Extended Abstracts EuroComb 2021.
12 M. Balko, D. Chodounský, J.H., M. Konečný, L. Vena: Big Ramsey degrees of 3-uniform

hypergraphs are finite, Combintorica (2022).


