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By induction pick V,, € U so that max{\(V}) : i < n, kp} < A(Vp) < k.
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Istvan Juhasz (Rényi Institute) double density spectrum 2022 7/10



Results for compacta 1.

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing o-centered 0-dimensional
topologies on [w]“ from appropriate ideals on w.

Our (separable) compact examples will be the compactifications of
these "ideal spaces".

DEFINITION. Let Z be any ideal on w with [w]<¥ C 7.
1)Forse2<w, leZletB(s,/)={Ac[w]*:sCxa NANIC]|s|}.
2) 7 is the topology generated by B; = {B(s,l): s € 2<¥ A | € T}.
NOTE. {B(s,0) : s € 2<“} is the standard base for the Baire space,
hence X7 = ([w]“, 77) is To. Each B(s, /) is infinite.

PROPOSITION. (i)Bz is a clopen and o-centered base for Xz.

(ii) m(X7) = cof(Z).

So, d(C) = w and 7(C) = cof(Z) for any compactification C of Xz.
Trivially, dd(X7) C dd(C).

Istvan Juhasz (Rényi Institute) double density spectrum 2022 7/10



Results for compacta 1.

Q1. is open. For 2. and 3. we have consistent counterexamples.

We give a general method of constructing o-centered 0-dimensional
topologies on [w]“ from appropriate ideals on w.

Our (separable) compact examples will be the compactifications of
these "ideal spaces".

DEFINITION. Let Z be any ideal on w with [w]<¥ C 7.
1)Forse2<w, leZletB(s,/)={Ac[w]*:sCxa NANIC]|s|}.
2) 7 is the topology generated by B; = {B(s,l): s € 2<¥ A | € T}.
NOTE. {B(s,0) : s € 2<“} is the standard base for the Baire space,
hence X7 = ([w]“, 77) is To. Each B(s, /) is infinite.

PROPOSITION. (i)Bz is a clopen and o-centered base for Xz.

(ii) m(X7) = cof(Z).

So, d(C) = w and 7(C) = cof(Z) for any compactification C of Xz.
Trivially, dd(X7) C dd(C).

Istvan Juhasz (Rényi Institute) double density spectrum 2022 7/10



Results for compacta 2.

DEFINITION. (i) A C [w]“ is full if A € A and B =" Aimply B € A.
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