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BAIRE-ONE FUNCTIONS vs Fσ-MEASURABLE FUNCTIONS
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Definitions and notations

	 A function f : X → Y is of the �rst Baire class, f ∈ B1(X,Y ), if f
is a pointwise limit of a sequence of continuous maps fn : X → Y

	 A function f : X → Y is Fσ-measurable, f ∈ Fσ(X,Y ), or of the
�rst Borel class, if for any open subset V of Y there exists a
sequence of closed sets in X such that f−1(V ) =

⋃
n∈ω Fn

B1(R,R) = Fσ(R,R)
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Lebesgue-Hausdorff Theorem

Theorem (Lebesgue, Hausdor�)

Fσ(X,Y ) = B1(X,Y )
X is a metrizable space and Y = [0, 1]ω, or
X is a metrizable separable space with dimX = 0 and Y is a
metrizable separable space.
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The case of connected Y

Theorem (Fosgerau, Veselý, 1993)

For a Polish space Y the following conditions are equivalent:
1 Y is connected and locally path-connected,
2 Fσ(X,Y ) = B1(X,Y ) for any perfectly normal X,
3 Fσ([0, 1], Y ) = B1([0, 1], Y ).
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The case of disconnected Y . Necessary condition

	 f : X → Y is functionally Fσ-measurable, f ∈ F ∗σ (X,Y ), if for any
open set V ⊆ Y there exists a sequence (Fn)n∈ω of zero-sets in X
such that f−1(V ) =

⋃
n∈ω Fn

	 F ∗σ (X,Y ) ⊆ Fσ(X,Y ) and Fσ(X,Y ) = F ∗σ (X,Y ) for any normal
space X

Let X be a topological space, Y is disconnected space such that
F ∗σ (X,Y ) ⊆ B1(X,Y ). Then every zero-set F ⊆ X can be written as

F =
⋃
k∈ω

⋂
n∈ω

Ukn,

where (Ukn) is a clopen set in X for all k, n ∈ ω.
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Almost strongly zero-dimensional space

	 A subset F of a topological space X is called a C-set if it can be
written as an intersection of a sequence of clopen sets in X.

	 A space X is almost zero-dimensional (AZD), if every point x ∈ X
has arbitrarily small neighborhoods that are intersection of clopen
subsets.

strongly zero-dim ⇒ zero-dim ⇒ AZD ⇒ totally disconnected
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Almost strongly zero-dimensional space

	 We say that a set A is a Cσ-set if

A =
⋃
k∈ω

⋂
n∈ω

Ukn,

where Ukn are clopen.

It is well-known that
a completely regular space X is strongly zero-dimensional if and every
zero-set is a C-set.

Definition
A completely regular space X is called almost strongly zero-dimensional

(ASZD) if every zero-set F ⊆ X is Cσ.
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Y is metrizable and separable

Theorem (K., 2017)

If X is a completely regular space and Y is a disconnected metrizable
separable space, then the following conditions are equivalent:

1 X is almost strongly zero-dimensional;
2 F ∗σ (X,Y ) = B1(X,Y ).
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Y is metrizable

	 A family A = (Ai : i ∈ I) of subsets of a topological space X is
called strongly functionally discrete, if there exists a discrete family
(Ui : i ∈ I) of cozero subsets of X such that Ai ⊆ Ui for every i ∈ I.

	 A family B of sets of a topological space X is called a base for a map
f : X → Y if the preimage f−1(V ) of an arbitrary open set V in Y is
a union of sets from B.

	 If B is a countable union of strongly functionally discrete families, we
say that f is σ-strongly functionally discrete, f ∈ Σs(X,Y ).

If Y is metrizable and separable space, then
every function f : X → Y is σ-strongly functionally discrete.

11 / 38



Y is metrizable

Theorem (K., 2017)

If X is a completely regular space with dimX = 0 and Y is a metrizable
space, then

F ∗σ (X,Y ) ∩ Σs(X,Y ) = B1(X,Y ).

Theorem (K., 2017)

If X is a completely regular space and Y is a disconnected metrizable
separable space, then the following conditions are equivalent:

1 X is almost strongly zero-dimensional;
2 F ∗σ (X,Y ) = B1(X,Y ).
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A question

Do there exists a completely regular (metrizable separable) almost strongly
zero-dimensional space X with dimX > 0?

strongly zero-dim ⇒ zero-dim ⇒ AZD ⇒ totally disconnected
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Properties of ASZD spaces

Theorem (K., 2022)

¬ dimX = 0 ⇒ X is ASZD ⇒ X is totally separated
­ If X is countably compact or X is a continuous image of a Polish

space, then X is ASZD ⇔ dimX = 0.
® If X is a perfectly normal with dimX = 0 and ϕ : X → R is

piecewise continuous. Then the graph Γϕ ⊆ X × R is ASZD.
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Y is not metrizable

Theorem (W. Rudin, 1981)

If X is a metrizable space, Y is a topological space and Z is a locally
convex space, then

CBα(X × Y,Z) ⊆ Bα+1(X × Y,Z).

f : [0, 1]× [0, 1]→ [0, 1], f ∈ CB1 ⇒ f ∈ B2 ⇔ f = lim fn, fn ∈ B1

Question (O. Sobchuk and V. Mykhaylyuk, 1995)
Is every function f ∈ CB1([0, 1]× [0, 1], [0, 1]) a pointwise limit of
separately continuous functions fn : [0, 1]× [0, 1]→ [0, 1]?
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HOMOTOPIC BAIRE-1 CLASS
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An equivalent definition of the fist Baire class

Definition
We say that f ∈ B1(X,Y ) if there exists a continuous map
H : X × ω → Y such that f(x) = lim

n→∞
H(x, n) for every x ∈ X.
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The first homotopic Baire class

Definition
We say that f ∈ hB1(X,Y ) if there exists a continuous map
H : X × [0,+∞)→ Y such that f(x) = lim

n→∞
H(x, n) for every x ∈ X.

If Y is contractible, then B1(X,Y ) = hB1(X,Y ).

19 / 38



The first homotopic Baire class

Definition
We say that f ∈ hB1(X,Y ) if there exists a continuous map
H : X × [0,+∞)→ Y such that f(x) = lim

n→∞
H(x, n) for every x ∈ X.

If Y is contractible, then B1(X,Y ) = hB1(X,Y ).

19 / 38



The first homotopic Baire class

Question (S. Maksymenko).
Let S1 be the unit circle in C. Is it true that B1(S1, S1) = hB1(S1, S1)?

General problem
To describe classes of spaces X and Y such that B1(X,Y ) = hB1(X,Y ).
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B1-Lifting property

A continuous map f : X → Y is a weak local homeomorphism if ∀y ∈ Y
∃V 3 y, U ⊆ X such that f |U : U → V is a homeomorphism.

Assume that X, Y and Z are topological spaces and ϕ : Z → Y is a weak
local homeomorphism. We say that the triple (X,Y, Z) has P-Lifting

Property whenever for all f ∈P(X,Y ) there exists g ∈P(X,Z) such
that f = ϕ ◦ g.

Z

X Y

g

f

ϕ
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Results and questions

Lifting Theorem for B1-functions (K. and Maksymenko, 2020)

Let X,Y, Z be topological spaces and Y is a paracompact space weakly
covered by a metrizable path-connected and locally path-connected space
Z. Then (X,Y, Z) has B1-Lifting Property.

Theorem (K. and Maksymenko, 2020)

Any open path-connected subset of a normed space is weakly covered by a
contractible and locally contractible metrizable space.
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Results and questions

Theorem (K. and Maksymenko, 2020)

Let X be a topological space and Y be a path-connected metrizable ANR.
Then

B1(X,Y ) = hB1(X,Y ).
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Results and questions

Question 1
Do there exists a path-connected subset X ⊆ R2 such that
B1(X,X) 6= hB1(X,X)?

f ∈ hB1(X,X)
⇓

f is a uniform limit of a sequence of fn ∈ hB1(X,X)
⇓

Question 2
Assume that X ⊆ R2 is a path-connected space. Is it true that hB1(X,X)
is closed under uniform limits?
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FRAGMENTABILITY
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Definition

Let X be a topological space, (Y, d) be a metric space and ε > 0.

A function f : X → Y is fragmented, if for every ε > 0 it is ε-fragmented,
i.e. there exists a sequence U = (Uξ : ξ ∈ [0, α)) in X of open sets such
that

diamf(Uξ+1 \ Uξ) < ε for all ξ ∈ [0, α);
∅ = U0 ⊂ U1 ⊂ U2 ⊂ . . . ;
Uγ =

⋃
ξ<γ Uξ for every limit ordinal γ ∈ [0, α).

We call α an index of ε-fragmentability of f .
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Theorem (Jayne, Orihuela, Pallarés and Vera, 1992)

Let X be a perfectly paracompact hereditarily Baire space, Y be a convex
subset of a Banach space. The following are equivalent:

f is fragmented;
f is of the first Baire class.
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Functionally fragmented maps

A function f : X → Y is fragmented, if for every ε > 0 there exists a
sequence U = (Uξ : ξ ∈ [0, α)) in X of open sets such that

diamf(Uξ+1 \ Uξ) < ε for all ξ ∈ [0, α);
∅ = U0 ⊂ U1 ⊂ U2 ⊂ . . . ;
Uγ =

⋃
ξ<γ Uξ for every limit ordinal γ ∈ [0, α).

An ε-fragmented map f : X → Y is
	 functionally ε-fragmented if every Uξ is a cozero set in X;
	 functionally ε-countably fragmented if U can be chosen to be

countable;
	 functionally countably fragmented if f is functionally ε-countably

fragmented for all ε > 0.
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Functionally fragmented maps

functional countable fragmentability

fragmentability countable
fragmentability

functional
fragmentability

continuityBaire-one
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Relations between different types of fragmentability

1 Let X be a topological space, (Y, d) be a metric space, ε > 0 and
f : X → Y be a map. If one of the following conditions holds

Y is separable and f is continuous,
X is hereditarily Lindelöf and f is fragmented,
X is compact and f ∈ B1(X,Y ),
X is Lindelöf, f ∈ B1(X,Y ) and fragmented,
X is Lindelöf, f is functionally fragmented,

then f is functionally countably fragmented.

2 If one of the following conditions holds
f is functionally countably fragmented,
X is perfectly paracompact and f is fragmented,
X is paracompact and f is functionally fragmented,

then f ∈ B1(X,R).
3 If X is hereditarily Baire and f ∈ B1(X,R), then f is fragmented.
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Further relations (Y = R)

functional countable fragmentability

fragmentability countable
fragmentability

functional
fragmentability

continuityBaire-one

X is compact

X is Lindelöf

X is perfectly paracompact

X is hereditarily Baire

X is paracompact

Question
Let X be paracompact, f : X → R
be fragmented and f ∈ B1. Is f
functionally fragmented?

31 / 38



Further relations (Y = R)

functional countable fragmentability

fragmentability countable
fragmentability

functional
fragmentability

continuityBaire-one

X is compact

X is Lindelöf

X is perfectly paracompact

X is hereditarily Baire

X is paracompact

Question
Let X be paracompact, f : X → R
be fragmented and f ∈ B1. Is f
functionally fragmented?

31 / 38



Application of fragmentability to extension of B1-functions

Theorem (O. Kalenda and J. Spurný, 2005)

Let E be a Lindelöf subspace of a completely regular space X and
f : E → R be a Baire-one function. If

E is Gδ, or
E is hereditarily Baire,

then there exists a Baire-one function g : X → R such that g = f on E.
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Questions

1 Let X be a hereditarily Baire completely regular space and f a
Baire-one function on X. Can f be extended to a Baire-one function
on βX?

2 Let X be a normal space, Y a closed hereditarily Baire subset of X
and f a Baire-one function on Y . Can f be extended to a Baire-one
function on X?

3 Let X be a normal space, Y =
⋂
n∈ω Gn ⊆ X is an intersection of

co-zero sets and f a Baire-one function on Y . Can f be extended to
a Baire-one function on X?
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Application of fragmentability to extension of B1-functions

Theorem (K. and Mykhaylyuk, 2020)

Let X be a completely regular space and f : X → R be a Baire-one
function. Consider the following conditions:
(i) f is functionally countably fragmented,
(ii) f is extendable to a Baire-one function on βX,
(iii) f is extendable to a Baire-one function on any completely regular

space Y ⊇ X,
(iv) f is extendable to a Baire-one function on any compactification Y of

X,
(v) f is fragmented.
Then (i) ⇔ (ii).
If X is Lindelöff, then

(i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v)
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Corollary

Question 1 (O. Kalenda and J. Spurny)
Let X be a hereditarily Baire completely regular space and f a Baire-one
function on X. Can f be extended to a Baire-one function on βX?

Theorem (K. and Mykhaylyuk, 2020)
There exist a completely metrizable locally compact space X and a Baire
one function f : X → [0, 1] such that f is not countably fragmented, in
particular, f can not be extended to a Baire one function g : βX → [0, 1].
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Corollary

For every ordinal α ∈ [ω, ω1) there exists a function f : [0, 1]→ [0, 1]
such that the index of the 1-fragmentability of f is α+ 1.

For every α < ω1 we put Xα = [0, 1] and consider the completely
metrizable locally compact space X =

⊕
α<ω1

Xα.

Now for every α < ω1 we choose a countably fragmented function
fα : Xα → [0, 1] such that the index of fragmentability of f is greater
than α. Now we consider the function f : X → [0, 1], f(x) = fα(x) if
x ∈ Xα. Since every fα is a Baire one function, f is a Baire one
function too. Moreover, it is clear that f is not countably fragmented.
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POSTSCRIPTUM
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POSTSCRIPTUM

Thank you for the attention!

Glory to Ukraine!
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