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Topological types of subspaces in
Lp-spaces

Throughout this talk, X = (X , d , µ) is a metric
measure space satisfying the following:

(Borel) Borel sets of X are measurable;

(Borel-regular) ∀E ⊂ X is contained in a Borel
set B ⊂ X s.t. µ(E ) = µ(B);

For ∀x ∈ X and ∀r ∈ (0,∞),
0 < µ(B(x , r)) <∞.

For 1 ≤ p <∞, let Lp(X ) = (Lp(X ), ∥ · ∥p) be the
Lp-space on X , which is a Banach space.

d is a metric and µ is a measure.

B(x , r) is the closed ball centered at x with radius r .
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Problem
Recognize “typical” infinite-dimensional spaces
among subspaces of Lp(X ).

Let ℓ2 be the separable Hilbert space, ℓf2 be the
linear span of the canonical orthonormal basis on ℓ2,
and Q be the Hilbert cube.
Due to the efforts of R.D. Anderson and
M.I. Kadec, we have the following:

Theorem 1.1

If X is infinite and separable, then Lp(X ) ≈ ℓ2.
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Consider

UC(X ) = {f ∈ Lp(X ) | f is uniformly continuous}.

Theorem 1.2 (R. Cauty (1991))

Let [0, 1] be equipped with the usual metric and the
Lebesgue measure. Then UC([0, 1]) ≈ (ℓf2)

N.

Theorem A (K (2020))

If X is separable and locally compact, and
{x ∈ X | µ({x}) ̸= 0} is not dense in X , then
UC(X ) ≈ (ℓf2)

N.
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A space X is doubling if the following is satisfied.
∃γ ≥ 1 s.t. µ(B(x , 2r)) ≤ γµ(B(x , r)) for
∀x ∈ X and ∀r > 0.

Consider

LIPb(X ) = {f ∈ Lp(X ) | f is lipschitz with a bounded support}.

Theorem B (K (?))

Let X be non-degenerate, separable and doubling.
Suppose that

(⋆) for ∀x ∈ X ,

(0,∞) ∋ r 7→ µ(B(x , r)) ∈ (0,∞)

is continuous.

Then (Lp(X ), LIPb(X )) ≈ (ℓ2 ×Q, ℓf2 ×Q).
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Z -sets in Lp(X )

Definition (Z -set)

For A ⊂
closed

Y , A is a (strong) Z -set in Y if idY is

approximated by f : Y → Y s.t. f (Y ) ∩ A = ∅
(cl f (Y ) ∩ A = ∅).

For a class C, Y is strongly C-universal if the
following holds.

Let f : A → Y , A ∈ C. Suppose that B ⊂
closed

A

and f |B is a Z -embedding. Then f is
approximated by a Z -embedding g : A → Y
s.t. g |B = f |B .

A Z -embedding is an embedding whose image is a Z -set.
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Theorem 2.1 (absorbing set)

Let Y ⊂ M. Suppose that M ≈ ℓ2 and Y satisfies
the following:

1 Y is homotopy dense in M and Y ∈ (M2)σ;
2 Y is strongly M2-universal;
3 Y is contained in a strong Zσ-set in M.

Then Y ≈ (ℓf2)
N.

Y is homotopy dense in M if ∃h : M × I → M s.t.
h(M × (0, 1]) ⊂ Y and h(y , 0) = y for ∀y ∈ M.

M2 is the class of absolute Fσδ sets.

A strong Zσ-set is a countable union of strong Z -sets.



Problem

Detect Z -sets in Lp(X ).

Lemma 2.2

Let ϕ : Y → Lp(X ) and a ∈ X with µ({a}) = 0.
Then for ∀ϵ : Y → (0, 1), ∃ψ : Y → Lp(X ) and
∃δ : Y → (0, 1) s.t. for ∀y ∈ Y ,

1 ∥ϕ(y)− ψ(y)∥p ≤ ϵ(y),
2 ψ(y)(B(a, δ(y))) = {0}.

For ∀n ∈ N and ∀U ⊂
open

int {x ∈ X | µ({x}) = 0},

Z (n,U) = {f ∈ Lp(X ) | |f (x)| ≥ 1/n for a.e. x ∈ U}

is a Z -set in Lp(X ) by Lemma 2.2.
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Lemma 2.3

Let a ∈ X with µ({a}) = 0. Suppose that
A ⊂ Lp(X ) and ξ : A → (0,∞) s.t. for ∀f ∈ A,
f (x) = 0 for a.e. x ∈ B(a, ξ(f )), and that B is a
Z-set in Lp(X ). If A ∪ B ⊂

closed
Lp(X ), then it is a

Z-set.



Characterizations of compact sets in
Lp-spaces

Theorem 3.1 (D. Curtis-T. Dobrowolski-J. Mogilski
(1984))

Let C be a σ-compact convex set in a completely
metrizable linear space. Suppose that clC is an AR
and not locally compact. Then
(clC ,C ) ≈ (ℓ2 ×Q, ℓf2 ×Q) if C contains an
infinite-dimensional locally compact convex set.

Compact sets in ℓ2 are Z -sets.



Problem

Give a criterion for subsets of Lp(X ) to be compact.

Theorem 3.2 (A.N. Kolmogorov (1931), M. Riesz
(1933))

A subset F ⊂
bounded

Lp(Rn) is relatively compact if

and only if the following are satisfied.
1 For ∀ϵ > 0, ∃δ > 0 s.t. ∥τaf − f ∥p < ϵ for

∀f ∈ F and ∀a ∈ Rn with |a| < δ.
2 For ∀ϵ > 0, ∃r > 0 s.t. ∥f χRn\B(0,r)∥p < ϵ for

∀f ∈ F .

For f : Rn → R and a ∈ Rn, τaf (x) = f (x − a).

For E ⊂ X , χE is the characteristic function of E , and for
f : X → R, f χE (x) = f (x) · χE (x).
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For f ∈ Lp(X ) and r > 0, define Ar f : X → R by

Ar f (x) =
1

µ(B(x , r))

∫
B(x ,r)

f χB(x ,r)(y)dµ(y),

which is called the average function of f .

Theorem 3.3 (P. Górka-A. Macios (2014))

Let X be doubling and p > 1. Suppose that
inf{µ(B(x , r)) | x ∈ X} > 0 for ∀r > 0. Then
F ⊂

bounded
Lp(X ) is relatively compact if and only if

the following hold.
1 For ∀ϵ > 0, ∃δ > 0 s.t. for ∀f ∈ F and

∀r ∈ (0, δ), ∥Ar f − f ∥p < ϵ.
2 For ∀ϵ > 0, ∃E ⊂

bounded
X s.t. ∥f χX\E∥p < ϵ for

∀f ∈ F .
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Theorem C
Let X be doubling. Suppose that

(∗) for ∀x ∈ X and ∀r > 0,

µ(B(x , r)△B(y , r)) → 0 as y → x .

Then F ⊂
bounded

Lp(X ) is relatively compact if and

only if the following are satisfied.
1 For ∀ϵ > 0, ∃δ > 0 s.t. for ∀f ∈ F and

∀r ∈ (0, δ), ∥Ar f − f ∥p < ϵ.
2 For ∀ϵ > 0, ∃E ⊂

bounded
X s.t. ∥f χX\E∥p < ϵ for

∀f ∈ F .

For A,B ⊂ X , let A△B = (A \ B) ∪ (B \ A).



Consider the following conditions between d and µ.

(⋆) For ∀x ∈ X ,

(0,∞) ∋ r 7→ µ(B(x , r)) ∈ (0,∞)

is continuous.

(∗) For ∀x ∈ X and ∀r ∈ (0,∞),

µ(B(x , r)△B(y , r)) → 0 as y → x .

(†) For ∀r ∈ (0,∞),

X ∋ x 7→ µ(B(x , r)) ∈ (0,∞)

is continuous.

Then (⋆) ⇒ (∗) ⇒ (†).



Fix ∀x0 ∈ X . For n ∈ N, let
L(n) = {f ∈ LIPb(X ) | ∥f ∥p ≤ n, lip f ≤ n, supp f ⊂ B(x0, n)}.

Then LIPb(X ) =
∪

n∈N L(n).

If X is doubling and satisfies (∗), then L(n) is
compact by Theorem C.

lip f is the lipschitz constant of f and supp f is the support of f .
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