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@ M. Hrusak, Almost disjoint families and topology. Recent progress in general topology. |11, 601-638, 2014.

@ F Hernandez-Hernandez, M. Hrugak, Topology of Mréwka-Isbell spaces. Pseudocompact topological spaces, 253-289,

Dev. Math., 55, 2018.
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© We consider continuous functions from W 4 into 2 x 2 matrices with pointwise
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In all theses cases we need extra combinatorial properties of the almost disjoint
families to obtain interesting examples.
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