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Some History

Previous results on Z(c) being countably compact:

Tkachenko, 1990 : Under CH

Tomita, 1998 : Under MA(σ-centered)

Koszmider, Tomita, Watson, 2000 : Under MA(countable),
forcing example

Madariaga-Garćıa, Tomita, 2007 : Under c selective ultrafilters
(also Z(2c), under 2c selective ultrafilters)

Boero, Castro-Pereira, Tomita, 2019 : Under 1 selective
ultrafilter
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Some History

Two results on finite powers:

Boero, Tomita, 2011 : The square is countably compact,
under c selective ultrafilters

Tomita, 2015 : All finite powers are countably compact, under
c incomparable selective ultrafilters

We also recall that in [8] Tomita showed that the ω-th power of a
free Abelian group cannot be countably compact.
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The Setting

We have obtained the following:

Theorem

Assume that there are c incomparable selective ultrafilters. Then
for every cardinal κ such that κω = κ, there is a Hausdorff group
topology on the free Abelian group of cardinality κ without
non-trivial convergent sequences and whose finite powers are
countably compact.
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The Setting

Recall the following result:

Theorem (van Douwen, [3])

The cardinality of a countably compact group cannot be a strong
limit of countable cofinality.

This classifies, under GCH, which free Abelian groups allow a
countably compact group topology:

Theorem (GCH)

A free Abelian group of infinite cardinality κ can be endowed with
a countably compact group topology if and only if κ = κω.
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Notation

Henceforth we fix a cardinal κ such that κω = ω and denote
G = Z(κ).

Given an ultrafilter p and f , g ∈ (Q(κ))ω we denote f ≡p g if
{n ∈ ω : f (n) = g(n)} ∈ p, and the class of f in this
equivalence relation [f ]p. The quotient (Q(κ))ω/ ≡p is here
denoted Ult(Q, p) and is called the ultrapower of Q(κ) by p.
We note that Ult(Q, p) has a natural Q-vector space
structure.

Ult(Z, p) := {[f ]p : f ∈ Gω}. Note that Ult(Z, p) ⊆ Ult(Q, p).

Given ξ < κ, χ
ξ⃗
is the sequence constantly equal to

χ{ξ} ∈ Z(κ).

The unit circle group T is the metric group (R/Z, δ), with the
metric δ(x + Z, y + Z) = min{|x − y + n| : n ∈ Z}.
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Selective Ultrafilters and the Rudin-Keisler Order

Recall that an ultrafilter p is selective if and only if for every
h : ω → ω there exists A ∈ p such that h|A is injective or
one-to-one.

Given an ultrafilter p and an f : ω → ω, let
f∗(p) = {A ∈ ω : f −1[A] ∈ p}.
We say that p ≤RK q if there exists an f : ω → ω such that
p = f∗(q).

We say that p and q are incomparable if neither p ≤RK q or
q ≤RK p.
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Finite Towers for Finite Powers

A finite tower is a finite non-increasing sequence in [ω]ω.

We denote the set of all finite towers by T . Notice that
|T | = c.

If T = (Ai : i < k) ∈ T , then l(T ) = Ak−1 (and l(∅) = ω).

Lemma

Assume there are c incomparable selective ultrafilters. Then there
is a family of incomparable selective ultrafilters
(pT ,n : T ∈ T , n ∈ ω) such that l(T ) ∈ pT ,n whenever T ∈ T and
n ∈ ω.

Matheus Koveroff Bellini (USP) Arbitrarily Large Countably Compact Free Abelian Groups

8
/
20



Finite Towers for Finite Powers

A finite tower is a finite non-increasing sequence in [ω]ω.

We denote the set of all finite towers by T . Notice that
|T | = c.

If T = (Ai : i < k) ∈ T , then l(T ) = Ak−1 (and l(∅) = ω).

Lemma

Assume there are c incomparable selective ultrafilters. Then there
is a family of incomparable selective ultrafilters
(pT ,n : T ∈ T , n ∈ ω) such that l(T ) ∈ pT ,n whenever T ∈ T and
n ∈ ω.

Matheus Koveroff Bellini (USP) Arbitrarily Large Countably Compact Free Abelian Groups

8
/
20



Finite Towers for Finite Powers

A finite tower is a finite non-increasing sequence in [ω]ω.

We denote the set of all finite towers by T . Notice that
|T | = c.

If T = (Ai : i < k) ∈ T , then l(T ) = Ak−1 (and l(∅) = ω).

Lemma

Assume there are c incomparable selective ultrafilters. Then there
is a family of incomparable selective ultrafilters
(pT ,n : T ∈ T , n ∈ ω) such that l(T ) ∈ pT ,n whenever T ∈ T and
n ∈ ω.

Matheus Koveroff Bellini (USP) Arbitrarily Large Countably Compact Free Abelian Groups

8
/
20



Finite Towers for Finite Powers

A finite tower is a finite non-increasing sequence in [ω]ω.

We denote the set of all finite towers by T . Notice that
|T | = c.

If T = (Ai : i < k) ∈ T , then l(T ) = Ak−1 (and l(∅) = ω).

Lemma

Assume there are c incomparable selective ultrafilters. Then there
is a family of incomparable selective ultrafilters
(pT ,n : T ∈ T , n ∈ ω) such that l(T ) ∈ pT ,n whenever T ∈ T and
n ∈ ω.

Matheus Koveroff Bellini (USP) Arbitrarily Large Countably Compact Free Abelian Groups

8
/
20



Branching Linear Independence

Definition

Let F be a subset of Gω and A ∈ [ω]ω. We shall call F linearly
independent mod A∗ if for every free ultrafilter p with A ∈ p,

([f ]p : f ∈ F) ∪ ([χ
ξ⃗
]p : ξ < κ)

is a linearly independent family of the Q-vector space Ult(Q, p).

Lemma

Every set of sequences that is l.i. mod A∗ can be extended to a
maximal linearly independent set mod A∗.
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Branching Linear Independence

Lemma

Let g be an element of Gω and let E ⊆ Gω be maximal
l.i. mod B∗. Then there exist an infinite subset A of B, a finite
subset E of E , a finite subset D of κ, and sets {rf : f ∈ E} and
{sν : ν ∈ D} of rational numbers such that

g |A =
∑
f ∈E

rf · f |A +
∑
ν∈D

sν · χν⃗ |A.

Corollary

If E ⊆ Gω is maximal l.i. mod B∗, then |E| = κ.
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Branching Linear Independence

Proposition

There exists a family (ET : T ∈ T ) such that:

1 For every T ∈ T the set ET is maximal l.i. mod l(T )∗, and

2 For every T ∈ T , if n ≤ |T | then ET |n ⊆ ET .

So now we enumerate each ET faithfully as {f Tξ : κ ≤ ξ < κ+ κ}.
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Generators of Free Subgroups

Definition

For each T ∈ T and n ∈ ω, we denote by GT ,n the intersection
of Ult(Z, pT ,n) and the free Abelian group generated by
{ 1
n! [f

T
ξ ]pT ,n

: κ ≤ ξ < κ+ κ} ∪ { 1
n! [χξ⃗

]pT ,n
: ξ < κ}.

Lemma

The group GT ,n has a basis of the form
{[χ

ξ⃗
]pT ,n

: ξ < κ} ∪ {[f ]pT ,n
: f ∈ FT ,n} for some subset FT ,n

of Gω.
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Guaranteeing Countable Compactness

Lemma

Assume that for every pair (T , n) in T × ω every sequence f
in FT ,n has a pT ,n-limit in G . Then every finite power of G is
countably compact.
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Obtaining p-limits via homomorphisms

Enumerate Gω = {hξ : ω ≤ ξ < κ} so that supp hξ(n) ⊆ ξ for all
n ∈ ω and ω ≤ ξ < κ, with c repetitions.

Lemma

There exists a family (JT ,n : T ∈ T , n ∈ ω) of pairwise disjoint
subsets of κ such that {hξ : ξ ∈ JT ,n} = FT ,n.

The following lemma is the main step towards guaranteeing that
each f ∈ FT ,n has a pT ,n-limit.
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Obtaining p-limits via homomorphisms

Lemma (Countable Homomorphism)

Assume we have d ∈ G\{0}, r ∈ Gω injective, and D ∈ [κ]ω such
that

1 ω ∪ supp d ∪
⋃

n∈ω supp r(n) ⊆ D,

2 D ∩ JT ,n ̸= ∅ for infinitely many (T , n)’s and,

3 supp hξ(n) ⊆ D for all n ∈ ω and ξ ∈ D \ ω
Then there exists a homomorphism ϕ : Z(D) → T such that:

1 ϕ(d) ̸= 0

2 pT ,n − lim(ϕ ◦ hξ) = ϕ(χξ), whenever T ∈ T , n ∈ ω, and
ξ ∈ D ∩ JT ,n

3 ϕ ◦ r does not converge.

From this Lemma we obtain, by recursion, the full homomorphism.
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Obtaining p-limits via homomorphisms

Lemma

Assume d ∈ G\{0} and r ∈ Gω is injective. Then there exists a
homomorphism ϕ : Z(κ) → T such that

1 ϕ(d) ̸= 0

2 pT ,n − lim(ϕ ◦ hξ) = ϕ(χξ), whenever T ∈ T , n ∈ ω and
ξ ∈ JT ,n

3 ϕ ◦ r does not converge.

The main result follows from obtaining such a ϕd ,r for each
d ∈ G\{0} and r ∈ Gω injective, and considering the initial
topology generated by these ϕd ,r .
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Where Do We Use Incomparableness?

There are two very technical lemmas to prove the Countable
Homomorphism Lemma

One uses stacks, a technique used in similar results on
non-torsion groups

The other is the following lemma:
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Where Do We Use Incomparableness?

Lemma

Let (Fk : k ∈ ω) be a sequence of countable subsets of Gω and let
(pk : k ∈ ω) be a sequence of pairwise incomparable selective
ultrafilters such that for each k ∈ ω
([f ]pk : f ∈ Fk) ∪ ([χ

ξ⃗
]pk : ξ ∈ κ) is linearly independent.

Furthermore let for every f ∈
⋃

k Fk a ξf ∈ κ be given. In addition
let d , d ′ ∈ G\{0} with disjoint supports. Finally, let D ∈ [κ]ω

containing ω ∪ supp d ∪ supp d ′ and
⋃

n supp f (n) for every
f ∈

⋃
k Fk . Then there exists a homomorphism ϕ : Z(D) → T such

that

1 ϕ(d) ̸= 0, ϕ(d ′) ̸= 0 and

2 pk − lim(ϕ ◦ f ) = ϕ(χξf ), whenever k ∈ ω and f ∈ Fk .
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Where Do We Use Incomparableness?

This last lemma requires the following combinatorial principle:

Lemma

Let (pk : k ∈ ω) be a family of pairwise incomparable selective
ultrafilters. For each k let (ak,i : i ∈ ω) be a strictly increasing
sequence in ω such that {ak,i : i ∈ ω} ∈ pk and i < ak,i for all
i ∈ ω. Then there exists {Ik : k ∈ ω} such that:

(a) {ak,i : i ∈ Ik} ∈ pk , for each k ∈ ω.

(b) Ij ∩ Ij = ∅ whenever i , j ∈ ω and i ̸= j , and

(c) {[i , ak,i ] : i ∈ Ik and k ∈ ω} is a pairwise disjoint family.
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