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o-compact = Hurewicz = Menger = Lindelof.
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Theorem (Zdomskyy, 2006)

The Hurewicz property is ¢-invariant.
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Theorem (K.)
The Menger property is f-invariant.

Some partial results were known before:

@ Zdomskyy, 2006: The Menger property is ¢-invariant under
the set-theoretic assumption u < g

® Sakai, 2020: The Menger property is ¢-invariant, for spaces
having property ().
Property (x) is a weaker form of first-countability.
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Let bX be a compactification of X. We define the k-Porada game
kP(bX,bX \ X):

| | (Ko, Uo) (K1, U1)
Il ‘ Vo Vl

Ko C bX \ X is compact # ), Up is open in bX and Ky C Uy

Vg is open in bX and Ko C Vp C Up

Ky C bX \ X is compact # (), Uy is open in bX and K1 C U; C V)
Vi isopenin bX and K1 C Vi C Uy

Player Il wins if () # MNhew Vn € bX\ X, otherwise Player | wins.
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Proposition (Telgdrsky, 1984)
The game kP(bX, bX \ X) is equivalent to the Menger game
M(X).

Corollary
Player | has no winning strategy in kP(bX, bX \ X) < the space
X is Menger.



For the projective properties of Menger and Hurewicz, we use the
Cech-Stone compactification 5X of X.



For the projective properties of Menger and Hurewicz, we use the
Cech-Stone compactification 5X of X.

Generally speaking, we replace " compact sets” by "zero-sets in
/BX” .



For the projective properties of Menger and Hurewicz, we use the
Cech-Stone compactification X of X.

Generally speaking, we replace " compact sets” by "zero-sets in
/6X” .
Proposition (K., Kucharski)
TFAE:
@ X is projectively Hurewicz

® VF C 58X\ X, such that F is a countable union of zero-sets in
BX, there exists a G5 subset G of SX with F C G C X\ X.



For the projective properties of Menger and Hurewicz, we use the
Cech-Stone compactification 5X of X.

Generally speaking, we replace " compact sets” by "zero-sets in
/8X” .
Proposition (K., Kucharski)
TFAE:
@ X is projectively Hurewicz

® VF C 58X\ X, such that F is a countable union of zero-sets in
BX, there exists a G5 subset G of SX with F C G C X\ X.

Proposition (K., Kucharski)

X is projectively Menger < Player | has no winning strategy in the
z-Porada game zP(B8X, X \ X)



For the projective properties of Menger and Hurewicz, we use the
Cech-Stone compactification 5X of X.

Generally speaking, we replace " compact sets” by "zero-sets in
/6X” .
Proposition (K., Kucharski)
TFAE:
@ X is projectively Hurewicz

® VF C 58X\ X, such that F is a countable union of zero-sets in
BX, there exists a G5 subset G of SX with F C G C X\ X.

Proposition (K., Kucharski)

X is projectively Menger < Player | has no winning strategy in the
z-Porada game zP(B8X, X \ X)

The game zP(8X, X \ X) is played as kP(SX, X \ X) with
additional requirement that the compact sets played by player | are
zero-sets in £X.
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Theorem (Bouziad, 1999)

Suppose that Z is Cech-complete. If C is compact and
¢: C— K(Z)is ls.c., then there is a compact L C Z that meets
every value of ¢, i.e. C = ¢ (L)
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