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ABSTRACT: We introduce and study the notion of Borel
reducibility between pseudometrics on standard Borel spaces,
which is a generalization of the famous notion of Borel reducibility
between equivalence relations.
The central object of our investigations is the Gromov-Hausdorff
distance, which turns out to be equally complex as several other
distances between metric or Banach spaces, such as the Kadets
distance or the Banach-Mazur distance. Next, we consider the
notion of an orbit pseudometric and provide a continuous version
of the well-known result of Clemens, Gao and Kechris that the
relation of isometry of Polish metric spaces is bireducible with a
universal orbit equivalence relation.
The present results come from the collaboration with Marek Cúth
and Michal Doucha.
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The talk is based on the following papers.

M. Cúth, M. Doucha and O. Kurka, Complexity of distances
between metric and Banach spaces: Theory of generalized
analytic equivalence relations, to appear in J. Math. Logic,
arXiv:1804.11164.

M. Cúth, M. Doucha and O. Kurka, Complexity of distances
between metric and Banach spaces: Reductions of distances
between metric and Banach spaces, Israel J. Math. 248
(2022), 383–439.

O. Kurka, Orbit pseudometrics and a universality property of
the Gromov-Hausdorff distance, preprint, arXiv:2204.08375.
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The results in this talk belong to the area of invariant descriptive
set theory.
Let us mention two simple motivating examples of invariants.

Example (for 10 years old)

Our task is to find out if two triangles T1 and T2 are isometric.
We just find the lengths of the sides and look whether these
triplets are the same up to the order.

In some sense, we have reduced the problem of isometry of
triangles to the problem whether triplets of numbers are the same.

Example (for 11 years old)

Our task is to find out if two n× n matrices A1 and A2 are similar.
We find their Jordan canonical forms and look whether they are
the same up to the order of the Jordan blocks.

In some sense, we have reduced the problem of similarity of square
matrices to the problem whether Jordan matrices are the same.
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Definition

Let E and F be equivalence relations on Polish spaces X and Y .
We say that E is Borel reducible to F , and write

E ≤B F ,

if there exists a Borel mapping f : X → Y (so-called reduction)
such that

f (x)F f (x ′) ⇔ x E x ′, x , x ′ ∈ X .

We say that E and F are Borel bireducible if E ≤B F and F ≤B E .

Remark

E ≤B F means that E is at most as “complex” as F .
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Definition

By the Urysohn space we mean the (up to isometry) only complete
separable metric space U with the property that for any finite
metric space A and any isometric embedding f : B → U, where
B ⊆ A, there exists an isometric embedding f̃ : A→ U extending
f .

It is easy to show that the Urysohn space is isometrically universal
for complete separable metric spaces. (For most of the talk, this
will be the only fact we need to know about U.)
In fact, the following result holds.

Theorem (Katětov)

Let X be a complete separable metric space. Then there is an
isometric embedding i : X → U such that any surjective isometry
on i(X ) can be extended to a surjective isometry on U.
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In the following definition, we introduce the Polish space of all
complete separable metric spaces.

Definition

We define
F (U) =

{
F ⊆ U : F is closed

}
,

and we equip F (U) \ {∅} with the Wijsman topology, defined as
the coarsest topology for which the function

F 7→ δU(u,F ),

is continuous for each u ∈ U.

Fact

F (U) \ {∅} equipped with the Wijsman topology forms a Polish
space.
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Remark

Similarly, we can define the Polish space of all separable Banach
spaces. We just equip

B =
{
F ⊆ C ([0, 1]) : F is closed and linear

}
.

with the corresponding Wijsman topology.

With these two codings, we can consider equivalence relations
between metric/Banach spaces as equivalence relations on a Polish
space.
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Definition

Let G be a group with identity e and let X be a set. By a group
action G y X we mean a mapping (g , x) ∈ G × X 7→ g · x ∈ X
satisfying

e · x = x

and
(gh) · x = g · (h · x).

Definition

We say that a topological group G is a Polish group if G with its
topology is a Polish space.

Definition

Let G y X be a Borel action of a Polish group G on a Polish
space X . The corresponding orbit equivalence relation is defined by

xEX
G y ⇔ ∃g ∈ G : g · x = y .
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Theorem (Miller, 1977)

The equivalence classes of EX
G are Borel.

Theorem (Clemens, Gao, Kechris, 2001)

There exists a universal orbit equivalence relation, that is, an orbit
equivalence into which any other orbit equivalence is Borel
reducible. Moreover, this relation is Borel bireducible with the
relation of isometry of complete separable metric spaces.

The universal orbit equivalence is also bireducible with:

the (linear) isometry relation of separable Banach spaces
(Melleray),

the affine homeomorphism of Choquet simplices (Sabok),

the isomorphism relation of separable C*-algebras (Sabok),

the homeomorphism relation of compact metric spaces
(Zielinski).

Consequently, all these relations have Borel equivalence classes.
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Definition

The equivalence relation E1 on RN is defined by

x E1 y ⇔ ∃N ∀n ≥ N : x(n) = y(n).

Theorem (Kechris, Louveau, 1997)

E1 is not Borel reducible to any orbit equivalence relation.

Corollary

The relation E1 is not Borel reducible to the isometry relation of
complete separable metric spaces (as well as to the other
equivalences from the previous slide).

The following question is an important open problem.

Question

Let E be a Borel equivalence relation into which E1 is not Borel
reducible. Is E Borel reducible to an orbit equivalence relation
then?



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Definition

The equivalence relation E1 on RN is defined by

x E1 y ⇔ ∃N ∀n ≥ N : x(n) = y(n).

Theorem (Kechris, Louveau, 1997)

E1 is not Borel reducible to any orbit equivalence relation.

Corollary

The relation E1 is not Borel reducible to the isometry relation of
complete separable metric spaces (as well as to the other
equivalences from the previous slide).

The following question is an important open problem.

Question

Let E be a Borel equivalence relation into which E1 is not Borel
reducible. Is E Borel reducible to an orbit equivalence relation
then?



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Definition

The equivalence relation E1 on RN is defined by

x E1 y ⇔ ∃N ∀n ≥ N : x(n) = y(n).

Theorem (Kechris, Louveau, 1997)

E1 is not Borel reducible to any orbit equivalence relation.

Corollary

The relation E1 is not Borel reducible to the isometry relation of
complete separable metric spaces (as well as to the other
equivalences from the previous slide).

The following question is an important open problem.

Question

Let E be a Borel equivalence relation into which E1 is not Borel
reducible. Is E Borel reducible to an orbit equivalence relation
then?



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Definition

The equivalence relation E1 on RN is defined by

x E1 y ⇔ ∃N ∀n ≥ N : x(n) = y(n).

Theorem (Kechris, Louveau, 1997)

E1 is not Borel reducible to any orbit equivalence relation.

Corollary

The relation E1 is not Borel reducible to the isometry relation of
complete separable metric spaces (as well as to the other
equivalences from the previous slide).

The following question is an important open problem.

Question

Let E be a Borel equivalence relation into which E1 is not Borel
reducible. Is E Borel reducible to an orbit equivalence relation
then?



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Definition

The Gromov-Hausdorff distance of non-empty metric spaces M
and N is defined by

%GH(M,N) = inf
X metric space

iM :M↪→X
iN :N↪→X

%XH
(
iM(M), iN(N)

)

(where iM , iN are isometric embeddings of M,N into X
and %XH denotes the Hausdorff distance between subsets of X ).

Definition

The Kadets distance of Banach spaces X and Y is defined by

%K (X ,Y ) = inf
Z Banach space

iX :X ↪→Z
iY :Y ↪→Z

%ZH
(
iX (BX ), iY (BY )

)

(where iX , iY are linear isometric embeddings of X ,Y into Z ).
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Definition

If % : X × X → [0,∞] is a pseudometric on a set X , we define

E% = {(x , y) : %(x , y) = 0}.

Theorem (Ben Yaacov, Doucha, Nies, Tsankov)

The equivalence classes of the relations E%GH and E%K are Borel.

Later, we will give a negative answer to the following question.

Question (Ben Yaacov, Doucha, Nies, Tsankov)

Is %GH(M, ·) a Borel function for every M ∈ F (U) \ ∅?
Is %K (X , ·) a Borel function for every X ∈ B?

It was pointed out by C. Rosendal that any orbit equivalence is
reducible to both E%GH and E%K . The following remains open.

Question (Ben Yaacov, Doucha, Nies, Tsankov)

Is the relation E%GH , resp. E%K , Borel reducible to an orbit
equivalence relation?
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Theorem 1 (Cúth, Doucha, K.)

The following equivalences are mutually Borel bireducible:

E%GH

E%GH restricted to metric spaces with distances in {0} ∪ [1, 2]

E%K

E%BM , where %BM is the Banach-Mazur distance of Banach
spaces

E%L , where %L is the Lipschitz distance of metric spaces

E%BL
, where %BL is the Lipschitz distance of Banach spaces

E%HL , where %HL is the Hausdorff-Lipschitz distance of metric
spaces

E%N , where %HL is the net distance of metric spaces

Corollary

The equivalence classes of the relations E%BM ,E%L ,E%BL
,E%HL and

E%N are Borel.
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E%N are Borel.
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Definition (Cúth, Doucha, K.)

Let %X and %Y be pseudometrics on Polish spaces X and Y . We
say that %X is Borel-u.c. reducible to %Y , and write

%X ≤B,u %Y ,

if there exists a Borel mapping f : X → Y such that, for every
ε > 0, there are δX > 0 and δY > 0 satisfying

∀x , y ∈ X : %X (x , y) < δX ⇒ %Y (f (x), f (y)) < ε

and

∀x , y ∈ X : %Y (f (x), f (y)) < δY ⇒ %X (x , y) < ε.

We say that %X is Borel-u.c. bireducible with %Y if %X ≤B,u %Y
and %Y ≤B,u %X .
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Remark

The reducibility between pseudometrics is

a strengthening of the reducibility between equivalences in the
sense that

% ≤B,u %
′ ⇒ E% ≤B E%′ ,

a generalization of the reducibility between equivalences in the
sense that

%E ≤B,u %F ⇔ E ≤B F .

Here, for an equivalence relation E on a Polish space X , the
pseudometric %E is defined by

%E =

{
0, x E y ,
1, otherwise.
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The proof of Theorem 1 provides also a quantitative version:

Theorem 2 (Cúth, Doucha, K.)

The following distances are mutually Borel-u.c. bireducible:

%GH

%GH restricted to metric spaces with distances in {0} ∪ [1, 2]

%K

%BM

%L

%BL
%HL

%N



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

We describe one of the reductions used for proving Theorem 2.

Let M2
1 denote the subspace of F (U) consisting of all spaces with

distances of distinct point in [1, 2].

For M = {pn : n ∈ N} ∈M2
1, let us consider the following

renorming of `2:

‖x‖M = sup
(
{‖x‖`2}∪

{ 1√
2
·
(
1+ 1

400 ·dM(pn, pm)
)
·|xn+xm| : n 6= m

})
for x = (xn)∞n=1 ∈ `2.

Then the mapping M 7→ (`2, ‖ · ‖M), once realized as a Borel
mapping M2

1 → B, is a Borel-u.c. reduction of %GH |M2
1×M2

1
to the

distances %K , %BM , and the versions of %L, %U , %HL, %N , %GH for B.
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Theorem 3 (Cúth, Doucha, K.)

If % is a pseudometric such that

%K ≤B,u %,

then the function %(x , ·) is not Borel for some x .

The proof uses the Tsirelson-like spaces constructed by
S. A. Argyros and I. Deliyanni.

Corollary

If % is any of the distances %GH , %K , %BM , %L, %
B
L , %HL, %N , then the

function %(x , ·) is not Borel for some x .
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A natural class of pseudometrics is obtained by a generalization of
orbit equivalence relations:

Definition

Let G y X be a Borel action of a Polish group G on a Polish
space X , and let d be a pseudometric on X with the property

d(x , y) = d(g · x , g · y), x , y ∈ X , g ∈ G .

Then we define

%G ,d(x , y) = inf{d(g · x , y) : g ∈ G}

and call such pseudometric an orbit pseudometric.

Remark

In fact, every pseudometric is an orbit pseudometric if we consider
a trivial action. For this reason, one should impose some
restrictions.
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Example

If d is the discrete metric, that is,

d(x , y) =

{
0, x = y ,
1, x 6= y ,

then

%G ,d(x , y) =

{
0, ∃g ∈ G : g · x = y ,
1, otherwise.

So, E%G ,d
is nothing else but the orbit equivalence EX

G .
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Example

Let X = [1, 2][N]
2
, let S∞ denote the group of permutations of N,

and let
(π · x)(m, n) = x

(
π−1(m), π−1(n)

)
and

d2(x , y) = sup
m 6=n

∣∣x(m, n)− y(m, n)
∣∣

for π ∈ S∞, x , y ∈ X ,m, n ∈ N,m 6= n.

It is not difficult to show that %S∞,d2(x , y) = 2%GH((N, x), (N, y))
whenever one of the sides is less than 1. It follows:

Theorem (Cúth, Doucha, K.)

%S∞,d2 is Borel-u.c. bireducible with %GH .
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Using a method of G. Hjorth, we prove the following generalization
of the result of Kechris and Louveau.

Theorem 4 (Cúth, Doucha, K.)

Let G ,X and d be as above, and let the action G y X be
continuous. If d is a complete metric and generates a topology
that is finer than the original topology of X , then E1 is not Borel
reducible to E%G ,d

.

Considering the result from the previous slide, we obtain:

Corollary

E1 is not Borel reducible to E%GH , E%K , E%BM , E%L , E%HL and E%N .
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Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X .
Let d be a lower semicontinuous pseudometric on X such that
d(x , y) = d(gx , gy) for any x , y ∈ X and g ∈ G .

Moreover, let there be continuous pseudometrics s1, s2, . . . on X
such that d = supn∈N sn.
Let %G ,d be the corresponding orbit pseudometric, i.e.
%G ,d(x , y) = infg∈G d(gx , y).
Then %G ,d is Borel-u.c. reducible to %GH .

Corollary

Let %G ,d be as above. Then E%G ,d
is Borel reducible to EGH , and so

its equivalence classes are Borel and E1 is not Borel reducible to it.

Theorem 6 (K.)

The Gromov-Hausdorff distance %GH is Borel-u.c. bireducible with
the orbit pseudometric %Iso(U),%H on F (U) \ {∅}.



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X .
Let d be a lower semicontinuous pseudometric on X such that
d(x , y) = d(gx , gy) for any x , y ∈ X and g ∈ G .
Moreover, let there be continuous pseudometrics s1, s2, . . . on X
such that d = supn∈N sn.

Let %G ,d be the corresponding orbit pseudometric, i.e.
%G ,d(x , y) = infg∈G d(gx , y).
Then %G ,d is Borel-u.c. reducible to %GH .

Corollary

Let %G ,d be as above. Then E%G ,d
is Borel reducible to EGH , and so

its equivalence classes are Borel and E1 is not Borel reducible to it.

Theorem 6 (K.)

The Gromov-Hausdorff distance %GH is Borel-u.c. bireducible with
the orbit pseudometric %Iso(U),%H on F (U) \ {∅}.



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X .
Let d be a lower semicontinuous pseudometric on X such that
d(x , y) = d(gx , gy) for any x , y ∈ X and g ∈ G .
Moreover, let there be continuous pseudometrics s1, s2, . . . on X
such that d = supn∈N sn.
Let %G ,d be the corresponding orbit pseudometric, i.e.
%G ,d(x , y) = infg∈G d(gx , y).

Then %G ,d is Borel-u.c. reducible to %GH .

Corollary

Let %G ,d be as above. Then E%G ,d
is Borel reducible to EGH , and so

its equivalence classes are Borel and E1 is not Borel reducible to it.

Theorem 6 (K.)

The Gromov-Hausdorff distance %GH is Borel-u.c. bireducible with
the orbit pseudometric %Iso(U),%H on F (U) \ {∅}.



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X .
Let d be a lower semicontinuous pseudometric on X such that
d(x , y) = d(gx , gy) for any x , y ∈ X and g ∈ G .
Moreover, let there be continuous pseudometrics s1, s2, . . . on X
such that d = supn∈N sn.
Let %G ,d be the corresponding orbit pseudometric, i.e.
%G ,d(x , y) = infg∈G d(gx , y).
Then %G ,d is Borel-u.c. reducible to %GH .

Corollary

Let %G ,d be as above. Then E%G ,d
is Borel reducible to EGH , and so

its equivalence classes are Borel and E1 is not Borel reducible to it.

Theorem 6 (K.)

The Gromov-Hausdorff distance %GH is Borel-u.c. bireducible with
the orbit pseudometric %Iso(U),%H on F (U) \ {∅}.



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X .
Let d be a lower semicontinuous pseudometric on X such that
d(x , y) = d(gx , gy) for any x , y ∈ X and g ∈ G .
Moreover, let there be continuous pseudometrics s1, s2, . . . on X
such that d = supn∈N sn.
Let %G ,d be the corresponding orbit pseudometric, i.e.
%G ,d(x , y) = infg∈G d(gx , y).
Then %G ,d is Borel-u.c. reducible to %GH .

Corollary

Let %G ,d be as above. Then E%G ,d
is Borel reducible to EGH , and so

its equivalence classes are Borel and E1 is not Borel reducible to it.

Theorem 6 (K.)

The Gromov-Hausdorff distance %GH is Borel-u.c. bireducible with
the orbit pseudometric %Iso(U),%H on F (U) \ {∅}.



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X .
Let d be a lower semicontinuous pseudometric on X such that
d(x , y) = d(gx , gy) for any x , y ∈ X and g ∈ G .
Moreover, let there be continuous pseudometrics s1, s2, . . . on X
such that d = supn∈N sn.
Let %G ,d be the corresponding orbit pseudometric, i.e.
%G ,d(x , y) = infg∈G d(gx , y).
Then %G ,d is Borel-u.c. reducible to %GH .

Corollary

Let %G ,d be as above. Then E%G ,d
is Borel reducible to EGH , and so

its equivalence classes are Borel and E1 is not Borel reducible to it.

Theorem 6 (K.)

The Gromov-Hausdorff distance %GH is Borel-u.c. bireducible with
the orbit pseudometric %Iso(U),%H on F (U) \ {∅}.



Invariant DST Orbit equivalences Pseudometrics Sample reduction Distances are not Borel Orbit pseudometrics Universality of GH

We now present some basic tools and ideas of the proof of
Theorem 5.

We need the following result.

Theorem (Melleray)

Let X be a complete separable metric space of diameter at most 1
and let G be a closed subgroup of Iso(X ). Then there exists an
extension Y of X such that

Y is a complete separable metric space,

any member of G can be extended in a unique way to a
surjective isometry on Y ,

any surjective isometry on Y is an extension of a member of
G .
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Without loss of generality, d ≤ 1.
We can also assume that the sequence s1, s2, . . . is non-decreasing.
Let γ be a compatible right-invariant metric on G with γ ≤ 1.
Let δX be a compatible complete metric on X with δX ≤ 1.
Let us consider the maximum distance on G × X .

Then Melleray’s theorem provides:

Claim

There is an extension Z of G × X such that

Z is a complete separable metric space of diameter at most 2,

for any h ∈ G , the isometry Ih : (g , x) 7→ (gh, x) can be
extended in a unique way from G × X to a surjective isometry
on Z ,

any surjective isometry on Z is an extension of Ih for some
h ∈ G .
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We define

W = (Z × N) ∪ (G × X × [0, 1]× N)

and a metric m on W as follows:

m((z1, k1), (z2, k2)) = 100 · |2k1 − 2k2 |+ 2min{k1,k2}δZ (z1, z2),

m((z , l), (g , x , u, k)) = u + 10 · 2k + m((z , l), ((g , x), k)),

m((g1, x1, u1, k), (g2, x2, u2, k)) = |u1−u2|+2kδZ ((g1, x1), (g2, x2)),

and for k1 6= k2,

m((g1, x1, u1, k1), (g2, x2, u2, k2)) =u1 + 10 · 2k1 + u2 + 10 · 2k2

+ m(((g1, x1), k1), ((g2, x2), k2)).
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For every p ∈ X , let us consider the subspace of W

Wp = (Z × N) ∪ {(g , x , sk(gp, x), k) : g ∈ G , x ∈ X , k ∈ N}.

Let Y be the completion of W and, for every p ∈ X , let Yp be the
closure of Wp in Y .

Claim

The mapping p 7→ Yp from X to F (Y ) is Borel.

Claim

For all p, q ∈ X ,

%Iso(Y ),%H (Yp,Yq) ≤ %G ,d(p, q) ≤ 2%GH(Yp,Yq).
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