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ABSTRACT: We introduce and study the notion of Borel
reducibility between pseudometrics on standard Borel spaces,
which is a generalization of the famous notion of Borel reducibility
between equivalence relations.

The central object of our investigations is the Gromov-Hausdorff
distance, which turns out to be equally complex as several other
distances between metric or Banach spaces, such as the Kadets
distance or the Banach-Mazur distance. Next, we consider the
notion of an orbit pseudometric and provide a continuous version
of the well-known result of Clemens, Gao and Kechris that the
relation of isometry of Polish metric spaces is bireducible with a
universal orbit equivalence relation.

The present results come from the collaboration with Marek Ciith
and Michal Doucha.
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The results in this talk belong to the area of invariant descriptive

set theory.
Let us mention two simple motivating examples of invariants.

Example (for 10 years old)

Our task is to find out if two triangles T; and T, are isometric.
We just find the lengths of the sides and look whether these
triplets are the same up to the order.

In some sense, we have reduced the problem of isometry of
triangles to the problem whether triplets of numbers are the same.

Example (for 11 years old)

Our task is to find out if two n X n matrices A; and A, are similar.
We find their Jordan canonical forms and look whether they are
the same up to the order of the Jordan blocks.

In some sense, we have reduced the problem of similarity of square
matrices to the problem whether Jordan matrices are the same.



Invariant DST
(o] Jelele]

Definition
Let E and F be equivalence relations on Polish spaces X and Y.
We say that E is Borel reducible to F, and write

ESBF7

if there exists a Borel mapping f : X — Y (so-called reduction)
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Definition
Let E and F be equivalence relations on Polish spaces X and Y.
We say that E is Borel reducible to F, and write

ESBF7

if there exists a Borel mapping f : X — Y (so-called reduction)
such that
f(x)Ff(xX) & xExX, x,x e€X.

We say that E and F are Borel bireducible if E <g F and F <g E.

Remark

E <p F means that E is at most as “complex” as F.
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Definition

By the Urysohn space we mean the (up to isometry) only complete
separable metric space U with the property that for any finite
metric space A and any isometric embedding f : B — U, where

B C A, there exists an isometric embedding f : A — U extending
f.

It is easy to show that the Urysohn space is isometrically universal
for complete separable metric spaces. (For most of the talk, this
will be the only fact we need to know about U.)

In fact, the following result holds.

Theorem (Katétov)

Let X be a complete separable metric space. Then there is an
isometric embedding i : X — U such that any surjective isometry
on i(X) can be extended to a surjective isometry on U.
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We define
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the coarsest topology for which the function

F — dy(u, F),

is continuous for each u € U.
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In the following definition, we introduce the Polish space of all

complete separable metric spaces.
Definition
We define
F(U)={F CU:F is closed},
and we equip F(U) \ {0} with the Wijsman topology, defined as
the coarsest topology for which the function
F — dy(u, F),

is continuous for each u € U.

Fact

F(U)\ {0} equipped with the Wijsman topology forms a Polish
space.
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Remark

Similarly, we can define the Polish space of all separable Banach
spaces. We just equip

B ={F C C([0,1]) : F is closed and linear}.

with the corresponding Wijsman topology.

With these two codings, we can consider equivalence relations
between metric/Banach spaces as equivalence relations on a Polish
space.
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Definition

Let G be a group with identity e and let X be a set. By a group
action G ~ X we mean a mapping (g,x) € G x X~ g-x€ X
satisfying

and
(gh) - x=g-(h-x).

Definition
We say that a topological group G is a Polish group if G with its
topology is a Polish space.

Definition
Let G ~ X be a Borel action of a Polish group G on a Polish
space X. The corresponding orbit equivalence relation is defined by

xEéy & dgeGig-x=y.
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Theorem (Miller, 1977)

The equivalence classes of Eé are Borel.

Theorem (Clemens, Gao, Kechris, 2001)

There exists a universal orbit equivalence relation, that is, an orbit
equivalence into which any other orbit equivalence is Borel
reducible. Moreover, this relation is Borel bireducible with the
relation of isometry of complete separable metric spaces.

The universal orbit equivalence is also bireducible with:
@ the (linear) isometry relation of separable Banach spaces
(Melleray),
@ the affine homeomorphism of Choquet simplices (Sabok),
@ the isomorphism relation of separable C*-algebras (Sabok),
@ the homeomorphism relation of compact metric spaces
(Zielinski).
Consequently, all these relations have Borel equivalence classes.
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Theorem (Kechris, Louveau, 1997)
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Definition

The equivalence relation E; on RY is defined by
xEiy < 3INVn>N:x(n)=y(n).

Theorem (Kechris, Louveau, 1997)

E; is not Borel reducible to any orbit equivalence relation.

Corollary

The relation Ey is not Borel reducible to the isometry relation of
complete separable metric spaces (as well as to the other
equivalences from the previous slide).

The following question is an important open problem.

Question

Let £ be a Borel equivalence relation into which Ej is not Borel
reducible. Is E Borel reducible to an orbit equivalence relation
then?
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Definition
The Gromov-Hausdorff distance of non-empty metric spaces M
and N is defined by

oGH(M, N) = inf o (im(M), in(N))
X metric space
I'M:M;)X
in:N—X

(where iy, iy are isometric embeddings of M, N into X
and g),f, denotes the Hausdorff distance between subsets of X).
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Definition
The Gromov-Hausdorff distance of non-empty metric spaces M
and N is defined by

ocH(M,N) = inf o (im(M),in(N))
X metric space
I'M:M;)X
in:N—X
(where iy, iy are isometric embeddings of M, N into X
and g),f, denotes the Hausdorff distance between subsets of X).

Definition
The Kadets distance of Banach spaces X and Y is defined by
. . Z /- c
QK(X’ Y) - V4 Banlarlﬁ space QH(IX(BX)? IY(BY)>

ix: X2
fy:Y‘—>Z

(where ix, iy are linear isometric embeddings of X, Y into Z).
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Definition

If 0: X x X — [0,00] is a pseudometric on a set X, we define

Ep = {(x,y) : o(x,y) = 0}.

Theorem (Ben Yaacov, Doucha, Nies, Tsankov)

The equivalence classes of the relations E,,, and E,, are Borel.

Later, we will give a negative answer to the following question.
Question (Ben Yaacov, Doucha, Nies, Tsankov)

Is og(M, -) a Borel function for every M € F(U) \ 07
Is ok (X, -) a Borel function for every X € B?

It was pointed out by C. Rosendal that any orbit equivalence is

reducible to both E,,, and E,,. The following remains open.

Question (Ben Yaacov, Doucha, Nies, Tsankov)

Is the relation E,,,, resp. E,,, Borel reducible to an orbit
equivalence relation?




Theorem 1 (Cath, Doucha, K.)

The following equivalences are mutually Borel bireducible:
e E

OGH

E,

9 Loen
° E,y
® Eppys
spaces

restricted to metric spaces with distances in {0} U [1, 2]

where ogp is the Banach-Mazur distance of Banach

(7]

E,,, where o, is the Lipschitz distance of metric spaces
° Eg%a, where Q? is the Lipschitz distance of Banach spaces

@ E,,, ., where op is the Hausdorff-Lipschitz distance of metric

spaces
e E

on’

where oy is the net distance of metric spaces
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Theorem 1 (Cath, Doucha, K.)
The following equivalences are mutually Borel bireducible:
e E

OGH

e E

oy restricted to metric spaces with distances in {0} U [1, 2]

° E,y
® Eppys
spaces

where ogp is the Banach-Mazur distance of Banach

@ E,,, where g is the Lipschitz distance of metric spaces
° EQ%%, where QQE is the Lipschitz distance of Banach spaces

e E,,, , where oy is the HausdorfF-Lipschitz distance of metric

spaces
e E

on+ Where opy is the net distance of metric spaces

Corollary

The equivalence classes of the relations E,,,, o and

E,, . E o E
E,, are Borel.
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Definition (Cuath, Doucha, K.)

Let ox and py be pseudometrics on Polish spaces X and Y. We
say that px is Borel-u.c. reducible to oy, and write

ox <B,u 0vY,

if there exists a Borel mapping f : X — Y such that, for every
€ > 0, there are §x > 0 and dy > 0 satisfying

Vx,y € X1 ox(x,y) <dx = ov(f(x),f(y)) <e
and

Vx,y € X0 oy(f(x),f(y)) <dy = ox(x,y) <e.
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Definition (Cuath, Doucha, K.)

Let ox and py be pseudometrics on Polish spaces X and Y. We
say that px is Borel-u.c. reducible to oy, and write

ox <B,u 0vY,

if there exists a Borel mapping f : X — Y such that, for every
€ > 0, there are §x > 0 and dy > 0 satisfying

Vx,y € X1 ox(x,y) <dx = ov(f(x),f(y)) <e
and
Vx,y € X0 oy(f(x),f(y)) <dy = ox(x,y) <e.

We say that px is Borel-u.c. bireducible with oy if ox <p , oy
and oy <, 0x.
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Remark
The reducibility between pseudometrics is

@ a strengthening of the reducibility between equivalences in the
sense that
0 SB,u Q/ = Eg <B Eg’>
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Remark
The reducibility between pseudometrics is
@ a strengthening of the reducibility between equivalences in the

sense that
0 SB,u Q/ = Eg <B Eg’>

@ a generalization of the reducibility between equivalences in the

sense that
0 <BuoF & E<pF.

Here, for an equivalence relation E on a Polish space X, the
pseudometric o is defined by

|0, xEy,
HE = 1, otherwise.
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The proof of Theorem 1 provides also a quantitative version:

Theorem 2 (Cuath, Doucha, K.)
The following distances are mutually Borel-u.c. bireducible:
® 0GH
0GH restricted to metric spaces with distances in {0} U [1,2]
0K
2BM
oL
of
OHL
onN

®© 6 6 66 6 o o
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Sample reduction
.

We describe one of the reductions used for proving Theorem 2.

Let M2 denote the subspace of F(U) consisting of all spaces with
distances of distinct point in [1,2].

For M = {p, : n € N} € M2, let us consider the following
renorming of /5:

s = sp ({1120{ -1+ (. )bt 7 m} )

for x = (xp)024 € {.

Then the mapping M +— (¢2,] - ||m), once realized as a Borel
mapping M? — B, is a Borel-u.c. reduction of QGH|M%XM§ to the
distances ok, 0gm, and the versions of gy, oy, OHL, ON, 0cH for B.
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Theorem 3 (Cith, Doucha, K.)

If 0 is a pseudometric such that

ok <B.u 0,

then the function o(x, -) is not Borel for some x.
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Theorem 3 (Cith, Doucha, K.)

If 0 is a pseudometric such that

ok <B.u 0,

then the function o(x, -) is not Borel for some x.

The proof uses the Tsirelson-like spaces constructed by
S. A. Argyros and |. Deliyanni.
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Theorem 3 (Cith, Doucha, K.)

If 0 is a pseudometric such that

ok <B.u 0,

then the function o(x, -) is not Borel for some x.

The proof uses the Tsirelson-like spaces constructed by
S. A. Argyros and |. Deliyanni.

Corollary

If o is any of the distances ogH, 0k, 0BM, OL, Q%, OHL, ON, then the
function o(x,-) is not Borel for some x.




Orbit pseudometrics
©000

A natural class of pseudometrics is obtained by a generalization of
orbit equivalence relations:

Definition

Let G ~ X be a Borel action of a Polish group G on a Polish
space X, and let d be a pseudometric on X with the property

d(X7y):d(g'X7g'y)7 X,yEX,gEG.
Then we define

06.d(x,y) =inf{d(g-x,y) : g € G}

and call such pseudometric an orbit pseudometric.
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A natural class of pseudometrics is obtained by a generalization of
orbit equivalence relations:

Definition

Let G ~ X be a Borel action of a Polish group G on a Polish
space X, and let d be a pseudometric on X with the property

d(X7y):d(g'X7g'y)7 X,yEX,gEG.
Then we define
QG,d(va) = Inf{d(gx>.y) P ZE G}

and call such pseudometric an orbit pseudometric.

Remark

In fact, every pseudometric is an orbit pseudometric if we consider
a trivial action. For this reason, one should impose some
restrictions.
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Example
If d is the discrete metric, that is,

=1 {7
then
ccaten)={ ) St 7
So, E, , is nothing else but the orbit equivalence E();(.
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Example

Let X = [1,2]™" let S, denote the group of permutations of N,

and let
(m-x)(m,n) = x(w_l(m), 7T_1(n))

and

da(x,y) = ;l;}i; !x(m, n) — y(m, n)’

form € S0, x,y € X,m,n € N,m # n.
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Example

Let X = [1,2]™" let S, denote the group of permutations of N,
and let

(7 - x)(m, ) = x(x X (m), 71 (m)
and

da(x,y) = ;l;}i; !x(m, n) — y(m, n)’

form € S0, x,y € X,m,n € N,m # n.

It is not difficult to show that os_ 4 (x,y) = 206 ((N, x), (N, y))
whenever one of the sides is less than 1. It follows:

Theorem (Cith, Doucha, K.)
0S...d, Is Borel-u.c. bireducible with ogn. J
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Using a method of G. Hjorth, we prove the following generalization
of the result of Kechris and Louveau.

Theorem 4 (Cuath, Doucha, K.)

Let G, X and d be as above, and let the action G ~ X be
continuous. If d is a complete metric and generates a topology
that is finer than the original topology of X, then E; is not Borel

reducible to Egc,d-
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Using a method of G. Hjorth, we prove the following generalization
of the result of Kechris and Louveau.

Theorem 4 (Cuath, Doucha, K.)

Let G, X and d be as above, and let the action G ~ X be
continuous. If d is a complete metric and generates a topology
that is finer than the original topology of X, then E; is not Borel

reducible to Egc,d-

Considering the result from the previous slide, we obtain:

Corollary
E,

oK’

E E, . E

Ey is not Borel reducible to E, oem+ Eorr Eomt

and E,,.

GH’
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Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X.
Let d be a lower semicontinuous pseudometric on X such that
d(x,y) = d(gx,gy) forany x,y € X and g € G.

Moreover, let there be continuous pseudometrics si, Sp, ... on X
such that d = sup,cy Sh.

Let oG 4 be the corresponding orbit pseudometric, i.e.

06,d(x,y) = infgec d(gx, y).

Then o¢ g4 is Borel-u.c. reducible to ogh.

Corollary

Let o 4 be as above. Then E, , is Borel reducible to Egy, and so
its equivalence classes are Borel and E; is not Borel reducible to it.
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Theorem 5 (K.)

Let G be a Polish group acting continuously on a Polish space X.
Let d be a lower semicontinuous pseudometric on X such that
d(x,y) = d(gx,gy) forany x,y € X and g € G.

Moreover, let there be continuous pseudometrics si, Sp, ... on X
such that d = sup,cy Sh.

Let 06,4 be the corresponding orbit pseudometric, i.e.

06,d(x,y) = infgec d(gx, y).

Then o¢ g4 is Borel-u.c. reducible to ogh.

Corollary

Let o 4 be as above. Then E, , is Borel reducible to Egy, and so

its equivalence classes are Borel and E; is not Borel reducible to it.

Theorem 6 (K.)

The Gromov-Hausdorff distance ogy is Borel-u.c. bireducible with
the orbit pseudometric gjso(v),o, on F(U) \ {0}.
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We now present some basic tools and ideas of the proof of
Theorem 5.
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We now present some basic tools and ideas of the proof of
Theorem 5.

We need the following result.

Theorem (Melleray)

Let X be a complete separable metric space of diameter at most 1
and let G be a closed subgroup of Iso(X). Then there exists an
extension Y of X such that
@ Y is a complete separable metric space,
@ any member of G can be extended in a unique way to a
surjective isometry on Y,

@ any surjective isometry on Y is an extension of a member of
G.
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Without loss of generality, d < 1.

We can also assume that the sequence s, sy, ... is non-decreasing.
Let v be a compatible right-invariant metric on G with v < 1.

Let §x be a compatible complete metric on X with dx < 1.

Let us consider the maximum distance on G x X.
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Without loss of generality, d < 1.

We can also assume that the sequence s, sy, ... is non-decreasing.
Let v be a compatible right-invariant metric on G with v < 1.

Let §x be a compatible complete metric on X with dx < 1.

Let us consider the maximum distance on G x X.

Then Melleray's theorem provides:

Claim
There is an extension Z of G x X such that
@ Z is a complete separable metric space of diameter at most 2,

e for any h € G, the isometry Iy : (g, x) — (gh, x) can be

extended in a unique way from G x X to a surjective isometry
onZ,

@ any surjective isometry on Z is an extension of I, for some
heG.




We define
W= (ZxN)U(Gx X x[0,1] x N)

and a metric m on W as follows:

m((z1, k1), (22, ko)) = 100 - |2k — 2ke| - omintkukel 5 (2 7)),

m((z,1), (g, x,u, k) = u+10- 2+ m((z,1), (g, x), k)),
m((glaxla uy, k)v (gz,xz, uz, k)) = |U1—U2|+2k52((g1,xl), (g2aX2))7
and for ky # ko,

m((g1, x1, u1, k1), (&2, x2, U2, k2)) =ty + 10 - 2K 4y + 10 - 2k
+ m(((g17 X1)7 kl)? ((g2,X2), kZ))
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For every p € X, let us consider the subspace of W
W, = (Z xN)U{(g, x,sk(gp, x), k) : g € G,x € X,k € N}

Let Y be the completion of W and, for every p € X, let Y, be the
closure of W, in Y.
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W, = (Z xN)U{(g, x,sk(gp, x), k) : g € G,x € X,k € N}

Let Y be the completion of W and, for every p € X, let Y, be the
closure of W, in Y.

Claim
The mapping p — Y, from X to F(Y) is Borel.
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For every p € X, let us consider the subspace of W
W, = (Z xN)U{(g, x,sk(gp, x), k) : g € G,x € X,k € N}

Let Y be the completion of W and, for every p € X, let Y, be the
closure of W, in Y.

Claim
The mapping p — Y, from X to F(Y) is Borel.

Claim
For all p,q € X,

Q1so(Y),0n(Yps Yq) < 06,4(P, q) < 206H(Yp, Yq)-
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