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Topological graphs

Definition

A topological graph K is a graph (V(K), E(K)), whose domain
V(K) is a 0-dimensional, compact, second-countable (thus has a
metric) space and E(K) is a closed, reflexive and symmetric subset
of V(K)2.
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Topological graphs

A topological graph K is a graph (V(K), E(K)), whose domain
V(K) is a 0-dimensional, compact, second-countable (thus has a

metric) space and E(K) is a closed, reflexive and symmetric subset
of V(K)2.

@ A continuous function f: L — K is a homomorphism if
(a, by € E(L) implies (f(a), f(b)) € E(K).

@ A homomorphism f is an epimorphism if it is moreover
surjective on both vertices and edges.
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Projective Fraissé classes

Definition

Let F be a countable class of finite graphs with a fixed class of
epimorphisms between the graphs in F. We say that F is a
projective Fraissé class if

© epimorphisms are closed under composition and each identity
map is an epimorphism;

@ for B, C € F there exist D € F and epimorphisms f: D — B
and g: D — C; and

@ for A, B, C € F and for every two epimorphisms f: B — A

and g: C — A, there exist D € F and epimorphisms
fo: D — B and gp: D — C such that f o fy = g o gp.
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Amalgamation property

For A, B, C € F and for every two epimorphisms f: B — A and
g: C — A, there exist D € F and epimorphisms fp: D — B and
go: D — C such that f o fy = g o go.

Aleksandra Kwiatkowska Finite graphs with confluent epimorphisms



Projective Fraissé limit

Theorem (Irwin-Solecki)

Let F be a projective Fraissé class with a fixed class of
epimorphisms between the graphs in F. There exists a unique
topological graph F (called the projective Fraissé limit) such that

© for each A € F, there exists an epimorphism from F onto A;

Q@ for A, B € F and epimorphisms f: F — Aand g: B — A
there exists an epimorphism h: F — B such that f = g o h.

© For every e > 0 there is a graph G € F and an epimorphism
f:F — G such that f is an e-map.
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Projective Fraissé sequence

Proposition
Let F be a projective Fraissé class. Then there exist an inverse
sequence {Ap, an} in F such that:
@ for each A€ F, n €N, and epimorphism f: A — A, there
exists m > n and an epimorphism g: A, — A such that
fg =ap.
In that case the inverse limit of {A,, an} is isomorphic to the
projective Fraissé limit F of F.

Such a sequence we call a Fraissé sequence.
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Topological realization

Let IF be a projective Fraissé limit of a projective Fraissé class of
finite connected graphs.

e Typical situation: F is a Cantor set and E(F) is an equivalence
relation with only single and double equivalence classes.

@ Then |F| = F/E(F) (the topological realization of F) is a
one-dimensional continuum.

Aleksandra Kwiatkowska Finite graphs with confluent epimorphisms



The first example

o (lrwin-Solecki) pseudo-arc
F = {finite linear graphs, all epimorphisms}
As a consequence Irwin and Solecki obtained:

@ (Mioduszewski) Each chainable continuum is a continuous
image of the pseudo-arc.

@ Let X be a chainable continuum with a metric d on it. If fi,
f» are continuous surjections from the pseudo-arc onto X,
then for any € > 0 there exists a homeomorphism h of the
pseudo-arc such that d(fi(x), f2 o h(x)) < € for all x.
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More examples

QO (Bartosova-Kwiatkowska) Lelek fan
F = {rooted trees, all epimorphisms}

@ (Panagiotopoulos-Solecki) Menger curve
F = {finite connected graphs, monotone epimorphisms}
© (Charatonik-Roe) Wazewski dendrite D3
F = {finite trees, monotone epimorphisms}
O (Codenotti-Kwiatkowska) all generalized Wazewski
dendrites Dp, P C {3,4,...,w}
Fp = {finite trees, weakly coherent epimorphisms}
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Monotone maps

Definition

A subset S of a topological graph G is disconnected if there are
two nonempty closed subsets P and @ of S such that PUQ =S
and if a€ P and b € Q, then (a,b) ¢ E(G). A subset S of G is
connected if it is not disconnected.
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Monotone maps

Definition

A subset S of a topological graph G is disconnected if there are
two nonempty closed subsets P and @ of S such that PUQ =S
and if a€ P and b € Q, then (a,b) ¢ E(G). A subset S of G is
connected if it is not disconnected.

Definition

@ (continua) Let K, L be continua. A continuous map
f: L — K is called monotone if for every subcontinuum M of
K, f~1(M) is connected.

o (graphs) Let G, H be topological graphs. An epimorphism

f: G — H is called monotone if for every closed connected
subset Q of H, f~1(Q) is connected.

Aleksandra Kwiatkowska Finite graphs with confluent epimorphisms



Confluent maps

@ (continua) Let K, L be continua. A continuous map

f: L — K is called confluent if for every subcontinuum M of
K and every component C of f~1(M) we have f(C) = M.

@ (graphs) Let G, H be topological graphs. An epimorphism
f: G — H is called confluent if for every closed connected

subset @ of H and every component C of f_l(Q) we have
f(C)=Q.
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More on confluent maps

Proposition (Charatonik-Roe)

Given two finite graphs G and H, the following conditions are
equivalent for an epimorphism f: G — H:

@ f is confluent;

@ for every edge P € E(H) and every component C of f~1(P)
there is an edge E in C such that f(E) = P.
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The projective Fraissé class G

Proposition (Charatonik-Roe)

The class G of finite connected graphs with confluent
epimorphisms is a projective Fraissé class.

o Let G denote the projective Fraissé limit. Then E(G) is an
equivalence relation with only single and double equivalence
classes.

o Let |G| denote the topological realization. This is a
one-dimensional continuum.
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Main Theorem

Theorem (Charatonik-K-Roe)
|G| has the following properties:

it is not homogeneous;

it is pointwise self-homeomorphic;
it is an indecomposable continuum;
all arc components are dense;

each point is the top of the Cantor fan;

©000O0CO0

it is hereditarily unicoherent, in particular, the circle S1 does
not embed in it;

the pseudo-arc and solenoids embed in it;

© 0

it is a Kelley continuum.
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Arc components

Let G and H be finite topological graphs and let f: G — H be a
confluent epimorphism. Let A C H be an arc with an end-vertex a
and let b € G be a vertex such that f(b) = a. Then there is an arc
B C G with one of the end-vertices equal to b such that

flg: B — A is a monotone epimorphism.
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Arc components

Let G and H be finite topological graphs and let f: G — H be a
confluent epimorphism. Let A C H be an arc with an end-vertex a
and let b € G be a vertex such that f(b) = a. Then there is an arc
B C G with one of the end-vertices equal to b such that

flg: B — A is a monotone epimorphism.

Each arc component of G is dense in G.

The continuum |G| has all arc-components dense.
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Embedding the pseudo-arc

The pseudo-arc can be embedded in |G]|.
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Embedding the pseudo-arc

The pseudo-arc can be embedded in |G]|.

This follows from the following lemma and from the work of
Irwin-Solecki.

Lemma

Let {l,,Bn}, where 3,'s are epimorphisms (not necessarily
confluent) and I,’s are arcs, be an inverse sequence with the
following property:

For every arc J, k > 0, and monotone epimorphism g: J — I,
there is | > k and an epimorphism (not necessarily confluent)
f:li—Jwthgof= B,/(. Then the inverse limit of {I,, 8,} can
be embedded in G.
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Embedding solenoids and non-homogeneity

There is a dense set of points in |G| that belong to a solenoid.
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Embedding solenoids and non-homogeneity

There is a dense set of points in |G| that belong to a solenoid.
There are of points in |G| that do not belong to a solenoid.
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Embedding solenoids and non-homogeneity

There is a dense set of points in |G| that belong to a solenoid.
There are of points in |G| that do not belong to a solenoid.
The continuum |G| is not homogeneous.
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Definition
For A € G we will say that C C Ais a cycle in Aif |[V(C)| > 2 and
we can enumerate the vertices of C as (¢, c1,...,¢, = ) in a

way that ¢; # ¢j whenever 0 </ < j < nand (cj, ¢;) € E(A) if and
only if [j —i| < 1.
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Definition
For A € G we will say that C C Ais a cycle in Aif |[V(C)| > 2 and
we can enumerate the vertices of C as (¢, c1,...,¢, = ) in a

way that ¢; # ¢j whenever 0 </ < j < nand (cj, ¢;) € E(A) if and
only if [j —i| < 1.

Definition

Confluent epimorphism between cycles we call wrapping maps.
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Definition
For A € G we will say that C C Ais a cycle in Aif |[V(C)| > 2 and
we can enumerate the vertices of C as (¢, c1,...,¢, = ) in a

way that ¢; # ¢j whenever 0 </ < j < nand (cj, ¢;) € E(A) if and
only if [j —i| < 1.

Definition
Confluent epimorphism between cycles we call wrapping maps.

Definition

The winding number of a wrapping map f is n if for every
(equivalently: some) ¢ € C, f~1(c) has exactly n components.
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Wrapping maps
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Classes of cycles

The class C of all cycles with confluent epimorphisms is a
projective Fraissé class.
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Classes of cycles

Lemma

The class C of all cycles with confluent epimorphisms is a
projective Fraissé class.

Let p1,po, ..., px be prime numbers and let D be the class of
cycles having an even number of vertices and with confluent
epimorphisms whose winding numbers are of the form

PPy ... pk, where ni,np, ..., ng € N. Then D is a projective
Fraissé class. )
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Lifting cycles

Let A,B € G and let f: B — A be a confluent epimorphism. Let
C =(co,c1,.-.,¢n = o) be a cycle in A. Then there is an induced
subgraph D of B such that D is a cycle, f(D) = C, and f|p is a
wrapping map.
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Graph-solenoids

Definition

The inverse limit of an inverse sequence of cycles {Cp, p,}, where
pn are confluent epimorphisms, is a graph-solenoid if for infinitely
many n the winding number of p, is greater than 1 and for every
x € V(C,) every component of p,1(x) contains at least 2 vertices.
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Graph-solenoids

Definition

The inverse limit of an inverse sequence of cycles {Cp, p,}, where
pn are confluent epimorphisms, is a graph-solenoid if for infinitely
many n the winding number of p, is greater than 1 and for every
x € V(C,) every component of p,1(x) contains at least 2 vertices.

Let D be a projective Fraissé class of cycles with confluent
epimorphisms such that its projective Fraissé limit D is a
graph-solenoid. Then the topological realization |D| exists and is a
solenoid.

By the result of Hagopian we have to show that the topological
realization is homogeneous and that every proper non-degenerate
subcontinuum is an arc.
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Hereditary unicoherence

© A continuum X is called hereditarily unicoherent if for every
two subcontinua P and @ of X the intersection PN Q is
connected.

@ A topological graph G is called hereditarily unicoherent if for
every two closed connected subsets P and Q of G the
intersection P N @ is connected.
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Hereditary unicoherence

© A continuum X is called hereditarily unicoherent if for every
two subcontinua P and @ of X the intersection PN Q is
connected.

@ A topological graph G is called hereditarily unicoherent if for
every two closed connected subsets P and Q of G the
intersection P N @ is connected.

v

G is hereditarily unicoherent.
|G| is hereditarily unicoherent.
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Cycle division

Definition

Given a topological graph G a quadruple (H, K, C, D) is called a
cycle division in G if the following conditions are satisfied:

@ H and K are closed connected subsets of G;

@ C and D are nonempty subsets of G which are closed in

HUK;
Q@ HhK=CuUD;
Q CNnD=0;

@ if ce C and d € D then (c,d) & E(G),
Note that Condition (4) follows from Condition (5).

Aleksandra Kwiatkowska Finite graphs with confluent epimorphisms



Cycle division 2

Suppose F is a Fraissé class of graphs such that for each graph

F € F and for each cycle division (H, K, C, D) in F there is a
graph G € F and a confluent epimorphism f: G — F such that no
cycle division in G is mapped onto (H, K, C, D). Then the
projective Fraissé limit F of F is hereditarily unicoherent.
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Cycle division 2

Suppose F is a Fraissé class of graphs such that for each graph

F € F and for each cycle division (H, K, C, D) in F there is a
graph G € F and a confluent epimorphism f: G — F such that no
cycle division in G is mapped onto (H, K, C, D). Then the
projective Fraissé limit F of F is hereditarily unicoherent.
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Thank you!
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