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Basic notions 29 i st

A space X will always be a topological space.

Given a space X, an open cover U and a set A C X, the star of A
with respect to U is the set

st(AU)=U{Uel: ANU £ 0}
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Introduction

Definition (lkenaga, 1980)

A space X is (strongly) star-compact, briefly SC (resp. SSC), if for
every open cover U of the space, there exists a finite subfamily V' of
U (resp., a finite subset F of X) such that st(|JV,U) = X (resp.,

st(F,U) = X).

Some compact-type and Lindel6f-type relative versions of star-covering properties
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Introduction

Definition (lkenaga, 1980)

A space X is (strongly) star-compact, briefly SC (resp. SSC), if for
every open cover U of the space, there exists a finite subfamily V' of
U (resp., a finite subset F of X) such that st(|JV,U) = X (resp.,
st(F,U) = X).

Definition (lkenaga, 1983)

A space X is (strongly) star-Lindeléf, briefly SL (resp. SSL), if for
every open cover U4 of the space, there exists a countable subfamily
V of U (resp., a countable subset C of X) such that

st(JV,U) = X (resp., st(C,U) = X).
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Definition
A space X is countably compact, briefly CC, if every its countable
open cover admits a finite subcover.
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Definition
A space X is countably compact, briefly CC, if every its countable
open cover admits a finite subcover.

e CC
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Definition
A space X is countably compact, briefly CC, if every its countable
open cover admits a finite subcover.

o CC = 55C
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Introduction

Definition
A space X is countably compact, briefly CC, if every its countable
open cover admits a finite subcover.

o CC = 55C = SC

Some compact-type and Lindel6f-type relative versions of star-covering properties

F.Maesano



Universita
degli Studi di
Messina

Introduction

Definition
A space X is countably compact, briefly CC, if every its countable
open cover admits a finite subcover.

e CC = S5C = SC

Let X be an Hausdorff space. Then
X CC & X S§5C
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Definition
A space X is pseudocompact if it is Tychonoff and every continuous
function f : X — R is bounded.
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Introduction

Definition
A space X is pseudocompact if it is Tychonoff and every continuous
function f : X — R is bounded.

Let X be a Tychonoff space. Then

X SC = X Pseudocompact
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Introduction

We denote with H the Hedgehog of spininess wy, i.e. the space with
support the quotient space of |J [0,1] x {a} with respect to the

acwr
relation

(x,0) = (y,f) & x=0=yor(x=yAa=p)

And the topology inherited by the metric

JIx—yl fa=p8
p([(X,a)][(y,ﬁ)])—{X+y if a #

F.Maesano Some compact-type and Lindel6f-type relative versions of star-covering properties



Introduction

Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.
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Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space.
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Introduction

Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space. The extent of X, denoted by e(X), is the
supremum of cardinalities of closed discrete subsets of X.
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Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space. The extent of X, denoted by e(X), is the
supremum of cardinalities of closed discrete subsets of X. Then

e(X) =w

Some compact-type and Lindel6f-type relative versions of star-covering properties

F.Maesano



Universita
gli Studi di
essina

Introduction

Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space. The extent of X, denoted by e(X), is the
supremum of cardinalities of closed discrete subsets of X. Then

e(X) =w

Some compact-type and Lindel6f-type relative versions of star-covering properties

F.Maesano



Universita
gli Studi di

Introduction

Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space. The extent of X, denoted by e(X), is the
supremum of cardinalities of closed discrete subsets of X. Then

e(X) =w [;:1]>x SSL
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Introduction

Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space. The extent of X, denoted by e(X), is the
supremum of cardinalities of closed discrete subsets of X. Then

e(X):w[;:?XSSL:XSL
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Introduction

Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space. The extent of X, denoted by e(X), is the
supremum of cardinalities of closed discrete subsets of X. Then

e(X) = w == X SSL = X SL —=2= X pseudo Lindelsf
B] [VDRRT]
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Introduction

Definition
A space X is pseudo Lindeldf if it is Tychonoff and every continuous
function f : X — H has Lindel6f image.

Let X be a space. The extent of X, denoted by e(X), is the
supremum of cardinalities of closed discrete subsets of X. Then

e(X) =w —[:> X SSL = X SL : X pseudo Lindelof
Every star convering property lie between CC and

pseudocompactness, if it is a compact-like property, and
pseudoLindelofness, if it is a Lindelof-like property.
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(i) X is SC
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Let X be a space. TFAE
(i) X is SC
(ii) for every A C X and every open cover U of X there is a finite
subfamily V of U such that A C st(JV,U)
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Results Characterizations

Let X be a space. TFAE
(i) X is SSC
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Results Characterizations

Let X be a space. TFAE
(i) X is SSC

(ii) for every A C X and every open cover U of X there is a finite
subset F of X such that A C st(F,U).
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Results Characterizations

Let X be a space. TFAE
(i) X is SSC

(ii) for every A C X and every open cover U of X there is a finite
subset F of X such that A C st(F,U).

(iii) for every nonempty subset A of X and every family U of open
sets in X such that A C |JU there is a finite subset F of X such
that A C st(F,U) .

F.Maesano
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Definition (Kocinac, Konca, Singh, 2021)
A space X is set star-compact, briefly set SC, if for every subset A of
X and every family U of open sets in X such that A C | JU there is a
finite subfamily V of U such that A C st(J V,U).
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A space X is set star-compact, briefly set SC, if for every subset A of
X and every family U of open sets in X such that A C | JU there is a
finite subfamily V of U such that A C st(J V,U).
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Definition (Kocinac, Konca, Singh, 2021)
A space X is set star-compact, briefly set SC, if for every subset A of
X and every family U of open sets in X such that A C | JU there is a
finite subfamily V of U such that A C st(J V,U).

e CC = set SC.
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Definition (Kocinac, Konca, Singh, 2021)
A space X is set star-compact, briefly set SC, if for every subset A of
X and every family U of open sets in X such that A C | JU there is a
finite subfamily V of U such that A C st(J V,U).

e CC = set SC.

Let X be a regular space. Then X CC < X set SC.
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Definition (K., K., S., 2021)

A space X is set strongly star-compact, briefly set SSC, if for every
subset A of X and every family U/ of open sets in X such that

A C |JU there is a finite subset F of A such that A C st(F,U).
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Definition (K., K., S., 2021)

A space X is set strongly star-compact, briefly set SSC, if for every
subset A of X and every family U/ of open sets in X such that

A C |JU there is a finite subset F of A such that A C st(F,U).

Let X be an Hausdorff space. TFAE
(i) X is CC

(i) X is set SSC

(iii) X is SSC
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Definition (Song, 2007)

A space X is K-star-compact, briefly KC-SC, if for every open cover U
of the space, there exists a compact subset K of X such that

st(K,U) = X.
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Definition (Song, 2007)

A space X is K-star-compact, briefly KC-SC, if for every open cover U
of the space, there exists a compact subset K of X such that
st(K,U) = X.

Definition (B., M., 2021)

A space X is set K-starcompact, briefly set K-SC, if for every subset
A of X and every family U of open sets in X such that A C JU
there is a compact subset K of A such that A C st(K,U).
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Definition (Song, 2007)

A space X is K-star-compact, briefly KC-SC, if for every open cover U
of the space, there exists a compact subset K of X such that
st(K,U) = X.

Definition (B., M., 2021)

A space X is set K-starcompact, briefly set K-SC, if for every subset
A of X and every family U of open sets in X such that A C JU
there is a compact subset K of A such that A C st(K,U).

e set SSC
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Definition (Song, 2007)

A space X is K-star-compact, briefly KC-SC, if for every open cover U
of the space, there exists a compact subset K of X such that
st(K,U) = X.

Definition (B., M., 2021)

A space X is set K-starcompact, briefly set K-SC, if for every subset
A of X and every family U of open sets in X such that A C JU
there is a compact subset K of A such that A C st(K,U).

e set SSC = X set K-SC
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Definition (Song, 2007)

A space X is K-star-compact, briefly KC-SC, if for every open cover U
of the space, there exists a compact subset K of X such that
st(K,U) = X.

Definition (B., M., 2021)

A space X is set K-starcompact, briefly set K-SC, if for every subset
A of X and every family U of open sets in X such that A C JU
there is a compact subset K of A such that A C st(K,U).

o set SSC = X set K-SC = X set SC
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Example (B., M., 2021)

An Hausdorff IC-SC (hence SC) space wich is not set SC (nor set
K-SC):
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Example (B., M., 2021)
An Hausdorff IC-SC (hence SC) space wich is not set SC (nor set
K-5C):
Consider the set Y U AU {a}, where A=[0,¢), Y = A x w and
a¢ Y UA, endowed with the following topology:
- each point of Y is isolated
- a basic neighbourhood for o € A takes the form
Un(a) = {a}U{{a,m): m<n},new
- a basic neighbourhood for the point a takes the form
Ue(a) ={a} U (U{{a,n) :a € A\ F,n e w}), F € [A]*¥
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Example
A T, set SC space wich is not KC-SC (nor set K-SC neither set SSC)
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Example
A T, set SC space wich is not KC-SC (nor set K-SC neither set SSC)

Consider w; U A, where |A| = w;, endowed with the following
topology:
- ws has the order topology
- a basic neighbourhood of a € A takes the form {a} U (3, w1)
with 8 € wy.
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Example
A T, set SC space wich is not KC-SC (nor set K-SC neither set SSC)

Consider w; U A, where |A| = w;, endowed with the following
topology:
- ws has the order topology
- a basic neighbourhood of a € A takes the form {a} U (3, w1)
with 6 € wy.

Question

Is there a regular (or at least Hausdorff) set SC space wich is not
K-5C?
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Results The compacts

Definition (Matveev, 1994)

A space X is absolutely countably compact, briefly acc, if for every
countable open cover U of X and every dense subspace D C X there
exists a finite subset F C D such that X = st(F,U).
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Definition (Matveev, 1994)

A space X is absolutely countably compact, briefly acc, if for every
countable open cover U of X and every dense subspace D C X there
exists a finite subset F C D such that X = st(F,U).

® acc = SSC
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Definition (Matveev, 1994)

A space X is absolutely countably compact, briefly acc, if for every
countable open cover U of X and every dense subspace D C X there
exists a finite subset F C D such that X = st(F,U).

e acc = SSC
Definition (K., S., 2021)

A space X is set absolutely countably compact, briefly set acc, if for
every subset A of X and family U of open sets in X such that

AC |JU and every dense subspace D C X there exists a finite
subset F C D such that A C st(F,U).

F.Maesano Some compact-type and Lindelof-type relative versions of star-covering properties



Universita
degli Studi di
Messina

Results The compacts

Question (K., S., 2020)

Is there an acc space wich is not set acc?
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Question (K., S., 2020)

Is there an acc space wich is not set acc?

We answer in a negative way
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Question (K., S., 2020)

Is there an acc space wich is not set acc?

We answer in a negative way

Let X be a space. Then X set acc < X acc.
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Definition (Bal, Kocinac, 2020)

A space X is selectively star ccc, if for every open cover U of X and
every sequence (A, : n € w) of maximal cellular open families in X,
there exists a sequence (A, : n € w) such that for each n € w,

A, € A, and X = st(|U,c, An U).
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Definition (Bal, Kocinac, 2020)

A space X is selectively star ccc, if for every open cover U of X and
every sequence (A, : n € w) of maximal cellular open families in X,
there exists a sequence (A, : n € w) such that for each n € w,

A, € A, and X = st(lJ, ., An,U).

new

Definition (K., S., 2020)

A space X is set selectively star-ccc, if for every subset A of X and
every family U of open sets in X such that A C | JU/ and every
sequence (A, : n € w) of maximal cellular open families in X, there
exists a sequence (A, : n € w) such that for each n € w, A, € A,
and A C st(, ., An,U).

new
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Question (K., S., 2020)

Does a selectively star-ccc space Tychonoff wich is not set selectively
star-ccc exists?
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Question (K., S., 2020)
Does a selectively star-ccc space Tychonoff wich is not set selectively

star-ccc exists?

We answer in a negative way, without the assumption of any
separatiom axiom.
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Results The compacts

Question (K., S., 2020)

Does a selectively star-ccc space Tychonoff wich is not set selectively
star-ccc exists?

We answer in a negative way, without the assumption of any
separatiom axiom.

Let X be a space. Then X is set selectively star-ccc < X is
selectively star-ccc.
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Definition (K., S., 2020)

A space X is set star-Lindeldf, briefly set SL, if for_every subset A of
X and every family U of open sets in X such that A C | JU there is a
countable subfamily V of U such that A C st(|J V,U).
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Definition (K., S., 2020)

A space X is set star-Lindeldf, briefly set SL, if for_every subset A of
X and every family U of open sets in X such that A C | JU there is a
countable subfamily V of U such that A C st(|JV,U).

Definition (K., S., 2020)

A space X is set strongly star-Lindeldf, briefly set SSL, if for every
subset A of X and every family U/ of open sets in X such that
A C |JU there is a countable subset C of A such that A C st(C,U).
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Let X be T, space. TFAE
(i) e(X) =w
(i) X is set SSL
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Results The Lindelofs

A space X is collectionwise Hausdorff if for every closed and discrete
subspace D of X there exists a disjoint family {O, : a € D} of open
neighbourhoods of points a € D.
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Results The Lindelofs

A space X is collectionwise Hausdorff if for every closed and discrete
subspace D of X there exists a disjoint family {O, : a € D} of open
neighbourhoods of points a € D.

Let X be a collectionwise Hausdorff SSL space. Then e(X) = w.
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Results The Lindelofs

A space X is collectionwise Hausdorff if for every closed and discrete
subspace D of X there exists a disjoint family {O, : a € D} of open
neighbourhoods of points a € D.

Let X be a collectionwise Hausdorff SSL space. Then e(X) = w.

Let X be a collectionwise Hausdorff set SL space. Then e(X) = w.
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Let X be a collectionwise Hausdorff space. TFAE
(i) e(X) =w

(i) X is set SSL

(iii) X is set SL

(iv) X is SSL
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Results The Lindelofs

The SL property cannot be added to the list of equivalences of the
previous result even in the class of Tychonoff spaces, as the following
example shows:
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Results The Lindelofs

The SL property cannot be added to the list of equivalences of the
previous result even in the class of Tychonoff spaces, as the following
example shows:

Example (B., M., 2021)

A collectionwise Hausdorff Tychonoff KC-SC (hence SL) space wich is
not SSL.
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The SL property cannot be added to the list of equivalences of the
previous result even in the class of Tychonoff spaces, as the following
example shows:

Example (B., M., 2021)

A collectionwise Hausdorff Tychonoff KC-SC (hence SL) space wich is
not SSL.

Consider (D x (w+ 1))\ ((6D \ D) x {w}) where D is the discrete
space with cardinality c.
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Corollary (B., M., 2021)

Let X be a collectionwise Hausdorff normal space. TFAE
(i) e(X) =w

(ii) X is set SSL
(iii) X is set SL
(iv) X is SSL
(v) X is SL
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Example (B., M., 2021)

An Hausdorff IC-SC (hence SC and SL) space wich is not set SL (nor
set SC).
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Results The Lindelofs

Example (B., M., 2021)

An Hausdorff IC-SC (hence SC and SL) space wich is not set SL (nor
set SC).

Consider again the space Y U AU {a}.
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Example (B., M., 2021)

An Hausdorff IC-SC (hence SC and SL) space wich is not set SL (nor
set SC).

Consider again the space Y U AU {a}.

Example (B., M., 2021)
A Tychonoff space wich is set SL but not set SSL
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Example (B., M., 2021)

An Hausdorff IC-SC (hence SC and SL) space wich is not set SL (nor
set SC).

Consider again the space Y U AU {a}.

Example (B., M., 2021)

A Tychonoff space wich is set SL but not set SSL

Consider the Isbell-Mrowka space ¢(A) = AU w where |A| =¢
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Example (B., M., 2021)

An Hausdorff IC-SC (hence SC and SL) space wich is not set SL (nor
set SC).

Consider again the space Y U AU {a}.

Example (B., M., 2021)
A Tychonoff space wich is set SL but not set SSL
Consider the Isbell-Mrowka space ¢(A) = AU w where |A| =¢

Example (B., M., 2021)
A Tychonoff SSL space wich is not set SL (nor set SSL)
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Example (B., M., 2021)

An Hausdorff IC-SC (hence SC and SL) space wich is not set SL (nor
set SC).

Consider again the space Y U AU {a}.

Example (B., M., 2021)

A Tychonoff space wich is set SL but not set SSL

Consider the Isbell-Mrowka space ¢(A) = AU w where |A| =¢
Example (B., M., 2021)

A Tychonoff SSL space wich is not set SL (nor set SSL)
Consider the space (D x (w+ 1))\ ((BD \ D) x {w}) & ¥(A).
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The following diagram sums up the previous results

set KC-SC

countable extent

set SC—f——= st SSC | — b | setsL

INVAE = |

NCC ¢ SSC ssL ——— SL

&

K-SC

y

SC
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Recall the following definitions:

Definition
A space X is:

F.Maesano Some compact-type and Lindel6f-type relative versions of star-covering properties



sita

udi di

1a
Results The Lindelofs

Recall the following definitions:

Definition
A space X is:

- weakly Lindeldf, briefly wL, if for every open cover U of X there
exists a countable subfamily V of & such that (JV = X.

- weakly Lindelof with respect to closed sets, briefly wL., if for
very closed subset F of X and for every family U of open sets
such that F C | JU there exists a countable subfamily V of U
such that (JV D F.
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Recall the following definitions:

Definition
A space X is:

- weakly Lindeldf, briefly wL, if for every open cover U of X there
exists a countable subfamily V of & such that (JV = X.

- weakly Lindelof with respect to closed sets, briefly wL., if for
very closed subset F of X and for every family U of open sets
such that F C | JU there exists a countable subfamily V of U
such that (JV D F.

® CCC
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Recall the following definitions:

Definition
A space X is:

- weakly Lindeldf, briefly wL, if for every open cover U of X there
exists a countable subfamily V of & such that (JV = X.

- weakly Lindelof with respect to closed sets, briefly wL., if for
very closed subset F of X and for every family U of open sets
such that F C | JU there exists a countable subfamily V of U
such that (JV D F.

e ccc = wl,
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Recall the following definitions:

Definition
A space X is:

- weakly Lindeldf, briefly wL, if for every open cover U of X there
exists a countable subfamily V of & such that (JV = X.

- weakly Lindelof with respect to closed sets, briefly wL., if for
very closed subset F of X and for every family U of open sets
such that F C | JU there exists a countable subfamily V of U
such that (JV D F.

e ccc = wlL, = wlL.
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Results The Lindelofs

Let X be a space. Then X wL. = X set SL.
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Let X be a space. Then X wL. = X set SL.

Corollary (B., M., 2021)
Let X be a space. Then X ccc = X set SL.
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Results The Lindelofs

Let X be a space. Then X wL. = X set SL.

Corollary (B., M., 2021)
Let X be a space. Then X ccc = X set SL.

Example (B., M., 2021)

A Tg set SL space wich is not wL. (hence not ccc)

F.Maesano Some compact-type and Lindel6f-type relative versions of star-covering properties



Universita
degli Studi di
Messina

Results The Lindelofs

Let X be a space. Then X wL. = X set SL.

Corollary (B., M., 2021)
Let X be a space. Then X ccc = X set SL.

Example (B., M., 2021)

A Tg set SL space wich is not wL. (hence not ccc)

Consider w; with the order topology.

F.Maesano Some compact-type and Lindel6f-type relative versions of star-covering properties



Universita
degli Studi di
Messina

Results The Lindelofs

Example (B., M., 2021)
A Tychonoff ccc (hence set SL) space wich is not SSL (nor set SSL)

F.Maesano Some compact-type and Lindelof-type relative versions of star-covering properties



Q " 4 essina
Results The Lindelofs

Example (B., M., 2021)
A Tychonoff ccc (hence set SL) space wich is not SSL (nor set SSL)

Consider the Pixley-Roy topology over R; i.e. given F € [R]<“ and
an open U C R in the standard topology, the P.R. topology will be
the one generated by the sets

[F, U ={Ve[R]™™:FcVcU}
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Results The Lindelofs

Definition (B., 1998)
A space X is:
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Definition (B., 1998)
A space X is:

- absolutely star-Lindeldf, briefly a-st-L, if for every open cover U
of X and every dense subspace D C X there exists a countable
subset C C D such that X = st(C,U).

- hereditarely closed absolutely star-Lindeldf, briefly h-cl-a-st-L,
provided that every its closed subset is a-st-L.
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Definition (B., 1998)
A space X is:

- absolutely star-Lindeldf, briefly a-st-L, if for every open cover U
of X and every dense subspace D C X there exists a countable
subset C C D such that X = st(C,U).

- hereditarely closed absolutely star-Lindeldf, briefly h-cl-a-st-L,
provided that every its closed subset is a-st-L.

e wl. and h-cl-a-st-L are indipendent properties.
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Results The Lindelofs

Let X be a space. Then X h-cl-a-st-L = X set SSL.
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Results The Lindelofs

Let X be a space. Then X h-cl-a-st-L = X set SSL.

Example
A Tychonoff set SSL space wich is not h-cl-a-st-L.
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Results The Lindelofs

Let X be a space. Then X h-cl-a-st-L = X set SSL.

Example
A Tychonoff set SSL space wich is not h-cl-a-st-L.

Consider the product space w; x (w; + 1) where both factors are
endowed with the order topology.
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The following diagram sums up the previous results.

a-st-L ~——+/— separable

|

ccc

h-cl-a-st-L ¢ ol

I

countable extent

= 7 set SL
set SSL e
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Thanks for your attention!
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