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All topological spaces are Tikhonov.

A topological space X is zero-dimensional if it has a base consisting of
clopen (i.e., closed and open) sets.
Every countable compact space is zero-dimensional.
Every uncountable metrizable compact space contains a closed
uncountable, zero-dimensional subspace - a copy of the Cantor set.

Problem
Does every compact space contain a closed zero-dimensional
subspace of the same weight?
Does every nonmetrizable compact space contain a closed
nonmetrizable, zero-dimensional subspace?

Several consistent examples giving a negative answer to the second
question (Fedorchuk 1975, Rudin-Zenor 1976, Plebanek 2020).

Example (Koszmider 2016)
There exists (in ZFC) a nonmetrizable compact space without
nonmetrizable zero-dimensional closed subspaces.
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Definition
A space K is an Eberlein compact space if K is homeomorphic to a
weakly compact subset of a Banach space.

Equivalently, a compact space K is an Eberlein compactum if K can
be embedded in the following subspace of the product RΓ:

c0(Γ) = {x ∈ RΓ : for every ε > 0 the set {γ : |x(γ)| > ε} is finite},

for some set Γ.
All metrizable compacta are Eberlein compact spaces.
Continuous images, closed subspaces, countable products of Eberlein
compacta are Eberlein compact spaces.
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Problem (Joel Alberto Aguilar)

Let K be an Eberlein compact space of weight κ. Does K contain a
closed zero-dimensional subspace L of the same weight?

Problem

Let K be a nonmetrizable Eberlein compact space. Does K contain a
closed nonmetrizable zero-dimensional subspace L?

We will show that the negative answer to this problem is consistent
with ZFC.
We do not know if the affirmative answer is also consistent with ZFC.
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Proposition
Let x be a nonisolated point of an Eberlein compact space K such that
the character χ(K , x) = κ. Then K contains a copy of a one point
compactification α(κ) of a discrete space of cardinality κ with x as its
point at infinity.

Corollary
Let K be an Eberlein compact space with a point of character κ. Then
K contains a closed zero-dimensional subspace L of weight κ.
In particular, each Eberlein compact space of uncountable character
contains a closed nonmetrizable zero-dimensional subspace L.

Corollary
Let K be an Eberlein compact space of weight > 2κ. Then K contains
a closed zero-dimensional subspace L of weight κ+.
In particular, each Eberlein compact space K of weight (cardinality)
> 2ω contains a closed nonmetrizable zero-dimensional subspace L.
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A subset L of a Polish space X without isolated points is called a Luzin
set if L is uncountable and, for every meager subset A of X , the
intersection X ∩ L is countable.

It is known that, the existence of a
Luzin set in X is equivalent with the existence of a Luzin set in the real
line R, and it is independent of ZFC.

Recall the construction of the Aleksandrov duplicate AD(K ) of a
compact space K .
AD(K ) = K × 2, points (x ,1), for x ∈ K , are isolated in AD(K ) and
basic neighborhoods of a point (x ,0) have the form (U × 2) \ {(x ,1)},
where U is an open neighborhood of x in K .

Proposition

The Aleksandrov duplicate AD(K ) of an Eberlein compact space K is
Eberlein compact.
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Example

Assume that there exists a Luzin set in R. Then, for each n ∈ ω
(n =∞), there exists an n-dimensional nonmetrizable Eberlein
compact space Kn such that any closed nonmetrizable subspace L of
Kn has dimension n.

Corollary

Assuming the existence of a Luzin set, there exists a nonmetrizable
Eberlein compact space K without closed nonmetrizable
zero-dimensional subspaces.
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Recall that the preorder ≤∗ on ωω is defined by f ≤∗ g if f (n) ≤ g(n) for
all but finitely n ∈ ω.

A subset A of ωω is called unbounded if it is unbounded with respect to
this preorder.

b = min{|A| : A is an unbounded subset of ωω} .
It is well known that the statement b > ω1 is consistent with ZFC.

Theorem
Assuming that b > ω1, each Eberlein compact space K of weight > ω1
contains a closed nonmetrizable, zero-dimensional subspace L.

Problem

Is it consistent that every Eberlein compact space K of weight ω1
contains a closed zero-dimensional subspace L of the same weight?

Problem
Does there exist in ZFC a compact space of weight ω1 without
nonmetrizable zero-dimensional closed subspaces?
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A compact space K is Corson compact if, for some set Γ, K is
homeomorphic to a subset of the Σ-product of real lines

Σ(RΓ) = {x ∈ RΓ : |{γ : x(γ) 6= 0}| ≤ ω}.

Clearly, the class of Corson compact spaces contains all Eberlein
compacta.
Let κ be an infinite cardinal number. A compact space K is κ-Corson
compact if, for some set Γ, K is homeomorphic to a subset of the
Σκ-product of real lines

Σκ(RΓ) = {x ∈ RΓ : |{γ : x(γ) 6= 0}| < κ}.

Obviously, the class of Corson compact spaces coincides with the
class of ω1-Corson compact spaces.
For κ = ω, Σκ(RΓ) = σ(RΓ) - the σ-product of real lines.
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A family U of subsets of a space X is T0-separating if, for every pair of
distinct points x , y of X , there is U ∈ U containing exactly one of the
points x , y .

Given a family U of subsets of a space X , a point x ∈ X , and an infinite
cardinal κ, we write ord(x ,U) < κ if |{U ∈ U : x ∈ U}| < κ.
We say that U is point-finite if ord(x ,U) < ω for all x ∈ X .

Proposition (Bonnet, Kubiś, Todorčević)
Let κ be an uncountable cardinal number. For a compact space K , the
following conditions are equivalent:
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ω-Corson compact spaces
An analogous characterization for ω-Corson compacta does not work:

Proposition (M., Plebanek, Zakrzewski)
For a compact space K , the following conditions are equivalent:

a There exists a T0-separating, point-finite family U consisting of
cozero subsets of K ;

b K is a scattered Eberlein compact space.

Recall that a space X is strongly countable-dimensional if X is a
countable union of closed finite-dimensional subspaces.

Proposition (M., Plebanek, Zakrzewski)
Every ω-Corson compact space is Eberlein compact and strongly
countably dimensional.

All metrizable, strongly countably dimensional compact spaces are
ω-Corson.
All scattered Eberlein compacta are ω-Corson.
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A family A of subsets of a space X is closure preserving if, for any
subfamily A′ ⊆ A, we have⋃

A′ =
⋃
{A : A ∈ A′} .

A space X is metacompact if every open cover of X has a point-finite
open refinement.

Theorem (M., Plebanek, Zakrzewski)
For a compact space K , the following conditions are equivalent:

a K is ω-Corson;
b K has a closure preserving cover consisting of finite dimensional

metrizable compacta;
c K is hereditarily metacompact and each nonempty subspace A of

K contains a nonempty relatively open separable, metrizable,
finite dimensional subspace U.
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Theorem (Gruenhage)
For a compact space K , the following conditions are equivalent:

(a) K is Eberlein compact;
(b) K 2 is hereditarily σ-metacompact;
(c) K 2 \∆ is σ-metacompact.

Example (M., Plebanek, Zakrzewski)
There exist a zero-dimensional Eberlein compact space K such that
K 2 is hereditarily metacompact, but K is not ω-Corson.

The class of ω-Corson compact spaces is clearly stable under taking
closed subspaces and finite products, but is not stable under taking
continuous images, as the Hilbert cube is a continuous image of the
Cantor set 2ω.

Theorem (M., Plebanek, Zakrzewski)
Assuming that b > ω1, each nonmetrizable ω-Corson space K contains
a closed nonmetrizable zero-dimensional subspace L.
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