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functional countability



Our spaces X are thus of Cantor-Bendixson rank 2, with the isolated points 
on level 0 and the non-isolated points on level 1. Of course, X+1 is of rank 3, 
with the sole point of level 2 being the extra point. 

At SUMTOPO 2022 in Vienna last week, several speakers talked about 
separable compact spaces of this form, and their Banach spaces C(X+1). This 
already gives a varied assortment of Banach spaces.



At Sumtopo 2022 in Vienna, I gave a class of examples 
that answer Question 4.10 in the affirmative:

In the examples I give, 
I use X+1 for the 
compact space rather 
than X as stated in 
Question 4.10 and the 
other questions posed 
by Tkachuk.

Main Vienna Theorem. Let X be a space with a countable dense 
set Q of isolated points, such that X \ Q is a closed discrete 
subspace, and each point of X \ Q has a (countable) compact 
neighborhood. 
Then (X+1)2 \ ∆X+1 is functionally countable.  

Instead of proving this 
theorem in the usual way, I 
showed it for a specific, 
down to earth example; the 
general theorem has 
essentially the same proof.It is trivial to show that X+1 itself is functionally countable: 

the function values on X \ Q must converge to f(∞). 
In particular, all but countably many must agree with f(∞). 



Vertical white lines represent Q x (X + 1) and horizontal 
lines represent (X+1) x Q. The dark gray background 
represents [(X+1) \ Q]2. 

We will be summarizing the properties of continuous 
real-valued functions on (X+1)2 minus the upper right 
corner point (∞ ,∞).

But first, we look at Tkachuk’s questions 4.1 through 
4.8, which, put positively, ask for nonseparable
examples. Example 2.1 leans heavily on the existence of 
the countable dense subset Q. 

The X of Example 2.1 has a locally compact, 
locally countable topology that is much finer 
than the usual (Euclidean)topology on (0,1).



Tkachuk’s first 6 questions are all answered by any counterexample for the first. The 7th and 8th are 
successively more demanding, but even the 8th is solved by the space described in the following slides, 
which is Fréchet-Urysohn.

Every functionally 
countable compact space 
is scattered, and so its 
cellularity is equal to the 
number of isolated points. 
This is also its density.





An alternative, which may be simpler 
conceptually for some, is to let the 
Dα list the countable crowded 
subsets of B0, since each has a 
Cantor set in its Euclidean closure.

This completes the description of Example 3.1.
The proof that it answers Tkachuk’s questions 
4.1 through 4.8 takes some work.



To see what these contradictions might be, we return to Example 2.1 
to see how the continuous functions for it have to behave.



The proof makes heavy use of the fact 
that each column {x} x (X + 1) and each 
row (X + 1) x {y} is homeomorphic to X + 1. 

Fix a continuous f: Y → ℝ.

The restriction of f to each row agrees 
with f(∞ , y) for all but countably many 
(x , y) in the row and its restriction to 
each column agrees with f(x , ∞) for all 
but countably many points in the column.  



We are removing the 
“nonconforming” points 
in Column q to get Bq , 
and then cutting out all 
rows with a rational 
“nonconformist” in 
them. 



The vertical red line represents 
{p} x ([X +1]\B), where p ∊ X\Q.

The vertical white lines represent the 
sequence <{qn} x ([X +1]\B)> 
where the qn τ-converge to p. 

The rectangle below represents Y0. This omits the countably many rows that make up (X + 1) x B.

Because D is dense in Y0, and f is continuous, and f is constant on 
each column of D, it will be constant on every vertical line of Y0 . 



The figure to the right deals with the case p = ∞. The 
columns converge to Column x (not labeled) of Y0 in the 
Euclidean topology, but in the topology on X+1, they 
converge to Column ∞ (orange). So f is constant on the 
whole orange column. 

And then all but countably many vertical lines of Y0 must 
agree with the same constant C. And those which do not, 
must have their function values converge to C. 

The result is that the restriction of f to Y0 is the 
composition of the projection π to the first coordinate 
with a continuous function g on X+1. Functional 
countability of f follows quickly.

On the other hand, when p = ∞, almost all sequences converge to p, including all sequences 
from Q that converge to some point x in the Euclidean topology but are disjoint from the 
canonical sequence that converge to x in the finer topology.  



We now return to the main example:

There is an obvious symmetry 
between Case II and Case III, but 
Case I and Case IV pose different 
problems than they do, and also
than each other.



Correction: Pα should stand for 
the intersection of the 
preimage of Zα with A.



A key fact about Xα is that it is a 
countable set of isolated points whose 
𝜏-closure  provides the first coordinates 
of points that we will be using to get a 
contradiction. 

Xα is the set of first coordinates of 
uniquely determined points in Pα .

This is very different than the behavior that a continuous 
function on a separable subspace must have, and so continuity 
of f is contradicted.



.





The remaining 5 questions ask for much more structure on the spaces 
involved, and we do not even have consistency results for them. 

There is a natural strengthening of the 9 solved problems that gives a very different picture. It is to 
ask that every closed subspace of 𝑋2 \ Δ𝑋 be functionally countable. Then even Question 10 
becomes very open, and the only example I have for this modification of Questions 1 through 8 
uses the axiom $\diamondsuit$. If this modification of the above questions turns out to have 
negative answers in ZFC, the argument might then give ideas for negative answers in ZFC to the 
above questions themselves. 


