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ZFC solution to 9 problems of Tkachuk on
functional countability



Functional countability has to do with real-valued continuous func-
tions, so “space” will mean “Tychonoff space.”

Definition 1.1. A functionally countable space is a space X such that
every continuous f : X — R has countable range.

As is well known, a compact space is functionally countable if, and
only if, it is scattered. The compact spaces we will be looking at have
very simple scattered structure. They are the one-point compactifica-
tions X + 1 of spaces X whose nonisolated points constitute a closed
discrete subspace.

Our spaces X are thus of Cantor-Bendixson rank 2, with the isolated points
on level 0 and the non-isolated points on level 1. Of course, X+1 is of rank 3,
with the sole point of level 2 being the extra point.

At SUMTOPO 2022 in Vienna last week, several speakers talked about
separable compact spaces of this form, and their Banach spaces C(X+1). This
already gives a varied assortment of Banach spaces.



Vladimir Tkachuk ended a paper on functionally countable spaces
with a list of 14 open questions about functional countability for spaces
of the form X?\ Ax. The only one that asked for a ZFC example was:

QUESTION 4.10. Is there a ZFC example of a non-metrizable com-
pact space X such that (X x X) \ Ax is functionally countable?

At Sumtopo 2022 in Vienna, | gave a class of examples
that answer Question 4.10 in the affirmative:

Main Vienna Theorem. Let X be a space with a countable dense
set Q of isolated points, such that X \ Q is a closed discrete

In the examples | give,
| use X+1 for the
compact space rather
than X as stated in
Question 4.10 and the
other questions posed
by Tkachuk.

Instead of proving this

subspace, and each point of X \ Q has a (countable) compact theorem in the usual way, |
neighborhood. showed it for a specific,
Then (X+1)%\ A, is functionally countable. down to earth example; the
general theorem has
It is trivial to show that X+1 itself is functionally countable: essentially the same proof.

the function values on X'\ Q must converge to f().
In particular, all but countably many must agree with f(o).



can be thought

The following example is chosen for easy visualizability. X? has the

open unit square as the underlying set, while (X + 1)?

of as (0, 1]* with a very different topology.

The X of Example 2.1 has a locally compact,
locally countable topology that is much finer
than the usual (Euclidean)topology on (0,1).

of Q(n € w).

QN (0,1) be a dense set of isolated points, and let

each p € X \ Q have a base of nejghborhoods consisting of p together

Example 2.1. Let X be the open unit interval (0, 1), with the following

with the tails of an ascending sequence of points o,(n)

topology. Let Q)

Vertical white lines represent Q x (X + 1) and horizontal
lines represent (X+1) x Q. The dark gray background

represents [(X+1) \ Q]>.

We will be summarizing the properties of continuous
real-valued functions on (X+1)%2 minus the upper right

corner point (oo , ).

But first, we look at Tkachuk’s questions 4.1 through

4.8, which, put positively, ask for nonseparable
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3. ONE ANSWER FOR THE FIRST 8 QUESTIONS

Tkachuk’s first 6 questions are all answered by any counterexample for the first. The 7t and 8t are
successively more demanding, but even the 8t is solved by the space described in the following slides,
which is Fréchet-Urysohn.

QUESTION 4.1. Suppose that X is a compact space such that (X x X) \ Ay is functionally countable.
Must X be separable?

QUESTION 4.2. Assume that X is a countably compact space and (X x X)\ Ax is functionally count-
able. Must X be separable?

QUESTION 4.3. Assume that X is a pseudocompact space and (X x X )N\ A x is ﬁmctionally countable.
Must X be separable?

QUESTION 4.4. Suppose thatX isa 0'~compact space such that (X x X)\ Ay is functionally cauntable Every functionally

Is it true that ¢(X) < @? countable compact space
QUESTION 4.5. Suppose that X zsaLmdelofE—space such that (X x X)\ Ay is functionally countable. IS scatt(?rec.i, and so its

Is it true that ¢(X) < ©? . cellularity is equal to the
QUESTION 4.6. Suppose that X is a a Lindelsf space such that (X x X)\ A is functionally countable. number of isolated points.
Is it true that ¢(X) <= @? This is also its density.

QUESTION 4.7. Suppose that X is a compact Space of countable tightness such that (X x X)\ Ay is
functionally countable. Must X be separable?

QUESTION 4.8. Suppose that X is a compact Fréchet-Urysohn space such that (X x X)\ Ax is func-
tionally countable. Must X be separable? . :



Recall that a Bernstein subset of a metric space M is one that meets
each uncountable closed subset of M, as does its complement. They
exist in every complete crowded separable metric space via a transfinite
induction. [A crowded space is one that has no isolated points.] This
uses the fact that every uncountable closed set in a complete criowded
metric space contains a copy of the Cantor set.

The following example answers Questions 1 through 8.

Example 3.1. Divide (0,1) into disjoint Bernstein sets By and B;.
The space X has underlying set (0,1) and topology 7 in which B is a.
dense set of isolated points, and each point p of B; has a sequence in
By converging to it in £, the Euclidean topology. With this sequence,
we associate a base of clopen sets for p as in Example 2.1.

We need to choose the sequences carefully. The method used owes a
lot to a technique pioneered by Eric van Douwen. It uses a transfinite
induction which, in the way used here, ensures that every Cantor set
in (0,1) has ¢-many points in the 7-closure of By.



We need to choose the sequences carefully. The method used owes a
lot to a technique pioneered by Eric van Douwen. It uses a transfinite
induction which, in the way used here, ensures that every Cantor set
in (0,1) has ¢-many points in the 7-closure of By.

Let < be a strict well-order on B;.Let (D, : a < ¢) list the countable
subsets of By with uncountable closure, with each subset listed 2% = ¢-
many times. Note that the £-closure of each D, has cardinality ¢, and
that every countable £ crowded subset is among the D,. At the ath
stage of the induction, assume that p, € B; and o, have been defined
for all v < . [In the base case @ = 0, this is vacuously true.] If
a < ¢, there exists p € B; in the £-closure of D, which is not among
the earlier p,; let p, be the <-least such p, and use a sequence o, in
D, that £-converges to p, to define the T-neighborhoods of p, as in
Example 2.1.

This completes the description of Example 3.1.
The proof that it answers Tkachuk’s questions
4.1 through 4.8 takes some work.

An alternative, which may be simpler
conceptually for some, is to let the
D, list the countable crowded
subsets of B, since each has a
Cantor set in its Euclidean closure.



When the induction in Example 3.1 is complete, every point in B; has
been given a base of countable, compact neighborhoods. The issue of
functional countability is much more complicated than in the separable
case. For one thing, every point of B? is isolated, so in this subspace
there is complete freedom to define continuous functions, and we have
to find the right D, to give us a contradiction for each uncountable

subset of Bf \ Ax.

To see what these contradictions might be, we return to Example 2.1
to see how the continuous functions for it have to behave.

Example 2.1. Let X be the open unit interval (0, 1), with the following
topology. Let @ = QN (0,1) be a dense set of isolated points, and let
each p € X \ Q have a base of nejghborhoods consisting of p together
with the tails of an ascending sequence of points o,(n) of Q(n € w).



As mentioned earlier, X + 1 = X U {00} is the one-point compacti-
fication of X.

The proof will show that Y = (X + 1)? \ {(c0,00)} is functionally
countable. The presence or absence of Ax has no real effect on the
proof.

The proof makes heavy use of the fact
that each column {x} x (X + 1) and each
row (X + 1) x {y} is homeomorphic to X + 1.

Fix a continuous f: Y — R.

The restriction of f to each row agrees
with f(co , y) for all but countably many

(x , y) in the row and its restriction to
each column agrees with f(x , o) for all
but countably many points in the column.




Example 2.1. Let X be the open unit interval (0, 1), with the following

topology. Let Q = QN (0,1) be a dense set of isolated points, and let
each p € X \ @ have a base of nejghborhoods consisting of p together
with the tails of an ascending sequence of points o,(n) of Q(n € w).

Step 1: Systematizing the columns of @ x [X 4 1]

For each column {¢} x [X +1], let B, = {y € X : f(q,y) # f(g,0)}.
Each B, is countable, hence so is B = J{B, : ¢ € Q}.

Let Yo = Y \ ([X + 1] x B). The restriction of f to each ¢)-column
of Y} is constant, but no two of these constants need be equal. After
all, each @Q-column is clopen in [X + 1]%.

We are removing the
“nonconforming” points
in Column g to get B,
and then cutting out all
rows with a rational
“nonconformist” in
them.



Step 2: The effect of D = Q x ([X + 1] \ B on the rest of ¥
The rectangle below represents Y,. This omits the countably many rows that make up (X + 1) x B.

Because D is dense in Y,, and f is continuous, and fis constant on
each column of D, it will be constant on every vertical line of Y, .

The vertical red line represents
{p} x ([X +1]\B), where p € X\Q.

The vertical white lines represent the
sequence <{q,} x ([X +1]\B)>
where the g, t-converge to p.




On the other hand, when p = o, almost all sequences converge to p, including all sequences
from Q that converge to some point x in the Euclidean topology but are disjoint from the
canonical sequence that converge to x in the finer topology.

The figure to the right deals with the case p = . The
columns converge to Column X (not labeled) of Y, in the
Euclidean topology, but in the topology on X+1, they
converge to Column oo (orange). So fis constant on the
whole orange column.

And then all but countably many vertical lines of Y, must
agree with the same constant C. And those which do not,
must have their function values converge to C.

The result is that the restriction of fto Y, is the
composition of the projection 1 to the first coordinate
with a continuous function g on X+1. Functional
countability of f follows quickly.




We now return to the main example:

Example 3.1. Divide (0,1) into disjoint Bernstein sets By and B;.
The space X has underlying set (0, 1) and topology 7 in which By is a
dense set of isolated points, and each point p of B; has a sequence in
By converging to it in £, the Euclidean topology. With this sequence,
we associate a base of clopen sets for p as in Example 2.1.

In each of the following four cases, A stands for an uncountable
subset of X?\ Ax such that the restriction of a real-valued function f
to A has uncountable range. In each case, there will be a way to show
that f is not continuous everywhere on X2\ Ax.

Case I. A C B3.

Case II. A C By x Bs.
Case III. A C B; X By.
Case IV. A C Bi.

In every case, A can be chosen to have f [4 be injective. Also, since
A cannot have uncountably many elements in any row or any column,
we can assume A meets each row and each column in at most one point.

In all four cases, we take advantage of the fact that each (z,y) € A
can be recovered from either of its coordinates.

There is an obvious symmetry
between Case Il and Case III, but
Case I and Case IV pose different
problems than they do, and also
than each other.



In Case I and Case II, the first step is to find a suitable denumerable
subset {p, = (Tn,¥n) : n € w} of A so that {f(p,) : n € w} has a
crowded subset, and such that {z, : n € w} has uncountable E-closure
and, therefore, uncountable 7-closure.

It is easy to find crowded {f(p,) : n € w} because we are working in
R. However, it could be true that {z,, : n € w} has countable E-closure.
If so, let {z, : n € w} = Xy and let {f(p,) : 1 € w} = Zy. If Z, and
X, have been defined for all v < « such that X, has countable closure,
let Z, be a crowded subset of f[A] \|U{Z, : v < a}, let P, = f~'Z,
and let

Xo=m[B]U| HX,:v<a}

Since the X, are strictly C-increasing, and every uncountable subset
of R has a countable crowded subset, there has to exist o < w; such
that X, has uncountable 7-closure. Let {z, : p < ¢} list all the points
of this 7-closure outside X, ; they will all be in B;.

Correction: P, should stand for

the intersection of the
preimage of Z, with 4.



Since the X, are strictly C-increasing, and every uncountable subset A key fact about X is thatitis a

of R has a countable crowded subset, there has to exist & < w; such countable set of isolated points whose
that X, has uncountable 7-closure. Let {z, : p < ¢} list all the points t-closure provides the first coordinates
of this 7-closure outside X, ; they will all be in B;. of points that we will be using to get a

contradiction.
Case II, A C By X B; now follows routinely:

I For each z,, let (z¥ : n € w) —, z,, where z* € X, for all n. X, is the set of first coordinates of

uniquely determined pointsin P, .
For each p, let p# = (z#, y#). As noted above, z* uniquely determines AuEy P .

p. Now the points y# of B, are all distinct and so they 7-converge to
oo. Therefore, pt —, (z,,00).

Now, if f is continuous, (f(p¥)) must converge to f(z,,00). We have
limited control over which z, are in the 7-closure of X,, but we can
find disjoint closed intervals [a,b] and [c,d] such that f[P,)] N [a,b])
and f[P,] N [c,d]) have disjoint, uncountable closures, because f(F,)
has c-many condensation points.

This is very different than the behavior that a continuous
function on a separable subspace must have, and so continuity
of f is contradicted.



Case I, A C B2, has a proof that has much in common with the
proof in Case II, but it is complicated by the way the points ¥, are in
By rather than in B;.

- It still could be the case that y¥ —, oo for uncountably many
i, reducing the argument to the one for Case II. This happéns, for
example, whenever y¥ —¢ y € By.

This leaves the case where there is a subsequence of (y* : n € w)
which 7-converges to a point y, of B; for all but countably many pu.
In this case, we have uncountably many p, in the 7-closure of F,, and
this is essentially the case covered in Example 2.1 -



It remains to take care of:

Case IV. A C B?. This is proven much like Case II, but since A is
closed discrete, the only way to get a contradiction is to extend f [4 to
put enough of A into the closure of a countable set of points of By x B;
that works somewhat like X, did there.

- Follow the construction of X, , but interpret all limits and closures
as £-limits and £-closures, and disregard the sentence where {z, : 1 <
c} is defined. Let (pr = (zr,yx) : £ € w) be a one-to-one listing of
X,. For each pg, find (zF : n € w) —, z), ©¥ € By Vn, k. Then
{zF : n € w,k € w} is the countable set of isolated points that does
the job that X, did in Case II. It has uncountable £-closure, hence
uncountable 7-closure.




The remaining 5 questions ask for much more structure on the spaces
involved, and we do not even have consistency results for them.

QUESTION 4.9. Suppose that X is a compact w-monolithic space such that the space (X x X)\ Ax is
functionally countable. Must X be countable? P

QUESTION4.1. Suppose that X is a linearly orderable space and (XxX)\Ax is functionally countable.
Must X be separable?

QUESTION 4.12. Suppose that X is a Lindelof P-space such that (X x X)\Ax is ﬁmctzonally countable.
Must X be countable?

QUESTION 4.13. Assume that (X x X)\ Ax is functionally countable and X is monotonically normal.
Must X be separable‘?

QUESTION 4.14, Suppose that X is a monotomcally normal compact space such that (X x X)\ Ay is
functionally countable. Must X be separable? ,

There is a natural strengthening of the 9 solved problems that gives a very different picture. It is to
ask that every closed subspace of X2\ A, be functionally countable. Then even Question 10
becomes very open, and the only example | have for this modification of Questions 1 through 8
uses the axiom S\diamondsuitS. If this modification of the above questions turns out to have
negative answers in ZFC, the argument might then give ideas for negative answers in ZFC to the
above questions themselves.



