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Definition
The small inductive dimension (Menger—Urysohn dimension) ind X
of a topological space X is defined by induction:

Q@ indX=-1ifX=g;

@ ind X < n, n>0, if given any point x € X and any closed set
F # x, x has an open neighborhood U such that U C X \ F
and indFrU < n—1,

@ indX=nn>0,ifindX <nandindX £ n—1;
Q@ ind X = oo if ind X £ n for any integer n > —1.
A space X with ind X = 0 is said to be zero-dimensional.

Any space X of finite dimension ind X is Ts3.



Definition
The large inductive dimension (Brouwer—Cech dimension) Ind X of
a topological space X is defined by induction:
QO IndX=-1ifX=g;
Q@ Ind X < n, n>0, if, given any disjoint closed sets f and G, F
has an open neighborhood U such that U € X\ G and
IndFrU < n—

Q@ IndX=nn> ,|f|ndX nand Ind X £ n—1;
Q Ind X = ¢ if Ind X £ n for any integer n > —1.

Any space X of finite dimension Ind X is Tj.
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Problem
Is it true that dimg X < dim X for any (completely regular) X ?
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dimX =0 = dimg X =0.

If X is normal, then dimg X = dim X.

dmX =0 <= IndX =0 (and X € T).
For X € T1, Ind X > ind X.

For completely regular X, dimg X = dim 8X.
Any Lindel6f zero-dimensional space X is strongly
zero-dimensional, i.e., if X is Lindeldf and ind X = 0, then
dimg X = 0 (= dim X = Ind X). Moreover,
dim X <ind X < Ind X.

Y C Xisclosed = dimY <dimX.

Y C X is C-embedded =— dimg Y < dimg X.

Zero-dimensionality is multiplicative and hereditary, while
strong zero-dimensionality is not.
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Theorem

There exist Lindelof topological groups G and H with

dimg G = dim G = dimg H = dim H = 0 and dimg(G x H) >0
(and dim(G x H) > 0).

One of the groups can be made to have countable network weight.

Problem (Arkhangel'skii (1981))

Is it true that the free (free Abelian) topological group of any
strongly zero-dimensinal space is strongly zero-dimensional?

Theorem

There exists a (strongly) zero-dimensional Lindeléf space X such
that both covering dimensions of F(X) and A(X) are positive.
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Construction

@ We modify Przymusinski's (strongly) zero-dimensional Lindelof
spaces C; and G, such that dimg(C; x G3) > 0 so as to make
them Lindel6f to any finite power. Then the free Abelian
topological groups A(C;) are Lindeldf and (strongly)
zero-dimensional.

@ There exists a coarser separable metrizable topology on C;
such that C; has a base consisting of sets closed in this
topology. Therefore, C; is a retract of the free Abelian
topological group A(C;) [Gartside+Reznichenko+S.].

@ Clearly, G x G, is a retract of A(C1) x A(C,). Hence G x G
is C-embedded in A(Cy) X A(G) =
dlmo(A(Cl) X A(C2)) = dimo(C1 X C2) = 1.

© We note that A(C;) x A(G) = A(CL @ () and prove that
(1 x Gy is C-embedded in both A(C; @ &) and F(G & &)
by examining the retraction A(C;) X A(G) — G x Gy, the
isomorphism A(Cy) x A(G) =2 A(GL @ (), and the natural
quotient homomorphism F(C @ &) — A(C @ G).
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Theorem

The existence of an Abelian basically disconnected group which is
not a P-space is equivalent to the existence of a nondiscrete
Boolean basically disconnected group of countable pseudocharacter.

(Consistently) exists a basically disconnected group G, not a
P-space, containing no open Boolean subgroups:

G = Gy x Gy, where Gj is a countable nondiscrete extremally
disconnected group and G; is an arbitrary nondiscrete
P-group [Comfort+Hindman+Negrepontis].
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Problem
Is it true that dimg G < oo for any Abelian topological F-group G
with (G) < w?

Problem (Shakhmatov (1990), Arhangel'skii+van Mill (2018))
Does the inequality dimg H < dimqg G hold for an arbitrary
subgroup H of an arbitrary topological group G?

Problem (Arhangel’skii (1981))

Is it true that ind F(X) = 0 (ind A(X) = 0) for any metrizable
space X withind X =07
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