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1. Cook continua

Cook continuum
= a nondegenerate metric continuum C such that

K ⊆ C subcontinuum
f : K → C continuous

}
⇒ f = identity or constant

I Existence of Cook continua: Cook 1967
I Cook continuum in the plane: Maćkowiak 1986



2. Supremum topological sequence entropy
Topological sequence entropy (can be used to distinguish between
systems with zero topological entropy, Goodman 1974).

(X ,T ) topological dynamical system (X compact, T continuous)
A = (a0 < a1 < · · · ) a sequence of nonnegative integers
U = open cover of X

hA(T ,U) = lim supn→∞
1
n logN

(∨n−1
i=0 T−ai (U)

)
N (V) = minimal card. of a subcover chosen from V

hA(T ) = sup
U

hA(T ,U) ...top. seq. entropy of T w.r.t. A

I A = (0, 1, 2, . . . )⇒ hA(T ) = h(T ), top. entropy of T
I more generally: h(0,k,2k,3k,... )(T ) = h(T k) = kh(T )



2. Supremum topological sequence entropy
Supremum topological sequence entropy of T :

h∗(T ) = sup
A

hA(T )

I h(T ) > 0⇒ h∗(T ) =∞
I h∗(T n) = h∗(T ), n = 1, 2, . . . (n ∈ Z \ {0} if T is homeo)

A way to compute h∗(T ) (Kerr, Li 2007, Huang, Ye 2009):

h∗(T ) = sup{log k : ∃ intrinsic IN-tuple of length k︸ ︷︷ ︸}
Intrinsic IN-tuple of length k =

(x1, . . . , xk) ∈ X k , pairwise different, for any nbhds U1, . . . ,Uk

there exist arbitrarily long finite independence sets of times︸ ︷︷ ︸
I = {3, 4, 9} is an independence set of times for U1, . . . ,Uk if

for any choice of indices s(3), s(4), s(9) ∈ {1, . . . , k}
there exists x ∈ X : T 3x ∈ Us(3),T

4x ∈ Us(4),T
9x ∈ Us(9)



3. Known possibilities for the sets of values of supremum
topological sequence entropy on various spaces

As a consequence of the formula h∗(T ) = sup{log k : . . . } we get:

S(X ) : = {h∗(T ) : T is continuous X → X}
⊆ {0, log 2, log 3, . . . } ∪ {∞}

3 previously known possibilities:
I S(X ) = {0}

I 0-dim spaces with finite derived sets (Ye, Zhang 2008)

I S(X ) = {0, log 2} ∪ {∞}
I interval (Canovas 2004), ..., finite graphs (Tan 2011)

I S(X ) = {0, log 2, log 3, . . . } ∪ {∞}
I 0-dim spaces with infinite derived sets (Tan, Ye, Zhang 2010)
I some dendrites (Tan, Ye, Zhang 2010)
I manifolds of dimension ≥ 2 (Tan, Ye, Zhang 2010)



4. Theorem describing all possibilities

We have:
I S(X ) ⊆ {0, log 2, log 3, . . . } ∪ {∞} ... explained above
I S(X ) ⊇ {0} ... consider T = identity or T = constant map

Therefore the following theorem describes all possibilities for S(X ):

Theorem. {0} ⊆ A ⊆ {0, log 2, . . . } ∪ {∞}
⇒ ∃ one-dim. continuum XA with S(XA) = A

Remarks:
I The same result for

Shom(X ) = {h∗(T ) : T is a homeomorphism X → X}
I Also for some group actions (under some assumptions on the

group), but in full generality the problem remains open.



5. Idea of the proof – ‘snakes’ of Cook continua
How to construct a continuum X with S(X ) = {0,∞}:

(= the easiest of the previously unknown cases)
Ingredients: Pairwise disjoint subcontinua K0, K1, K2, . . . of a
planar Cook continuum.

(These are non-homeomorphic Cook continua. Instead of
“a copy of Ki ” we will write just “Ki ”.)

In each Ki we fix the ‘first point’ and the ‘last point’.
(= the points where we will glue them)

1st step: An auxiliary system (X1,T1) with h∗(T1) =∞:
I X1 := K0 t {x1, x2, x3, . . . }

K0 = Cook continuum in a vertical plane,
the sequence (xn)

∞
n=1 approaches K0 from the right

I T1|K0 = identity
I T1(xn) = xn+1, n = 1, 2, . . .
I distances between xn and xn+1 tend to zero ⇒ T1 continuous



5. Idea of the proof – ‘snakes’ of Cook continua
I ‘vertical coordinates’ of the points xn are in a fixed dense set
{e1

0 , e
2
0 , e

3
0 , . . . } ⊆ K0

2nd block 1st block. . .

x1
x2

x3

xk1xk1+1e10

e20

e30

C0

I we place x1, x2, . . . in such a way that for each k ,
{e1

0 , e
2
0 , . . . e

k
0 } is an IN-tuple for T1

(for any choice of nbhds of these points, the tuple of the nbhds
has arbitrarily long finite indep. sets of times) ⇒ h∗(T1) =∞.



5. Idea of the proof – ‘snakes’ of Cook continua
2nd step: We join xn and xn+1 by a set Dn, n = 1, 2, . . . . We
obtain X = K0 t

⋃∞
n=1 Dn:

x1

x2

x3

D1

D2

D3

K 0

The sets Dn are obtained by gluing together copies of some of the
Cook continua K1,K2, . . . :

IIIIIIIVVVIVIIVIIIIIIVVIVIIIIVVIII

D1D2D3

x1x2x3x4

K1K2K3K4K5K6K7K8K2K4K6K8K4K8

The space X is a continuum.



5. Idea of the proof – ‘snakes’ of Cook continua

3rd step: We extend T1 : X1 → X1 to a continuous map
T : X → X , which maps D1 onto D2, D2 onto D3, . . . .

(In fact Dm can be continuously mapped onto DM if and
only if m ≤ M:

IIIIIIIVVVIVIIVIIIIXXXIXIIXIII

IVVIIIXIIXVI

The unique continuous surjective map D1 → D3

We have obtained a dynamical system (X ,T ). It contains, as a
subsystem, the dynamical system (X1,T1) we started with.



5. Idea of the proof – ‘snakes’ of Cook continua

4th step: We prove that S(X ) = {0,∞}:
I 0 is always in S(X ).
I ∞ ∈ S(X ) since h∗(T ) =∞ (indeed, h∗(T ) ≥ h∗(T1) =∞).
I If F : X → X is continuous then, using the structure of X , one

can show that
I either F is very simple, with h∗(F ) = 0 (in fact some iterate

FN is a retraction of X onto Fix(F )),
I or F = TN on the whole X except perhaps the beginning part

D1 ∪ · · · ∪ Dm for some m. Then

h∗(F ) ≥ h∗(TN) ≥ h∗(TN
1 ) = h∗(T1) =∞

and so h∗(F ) =∞.

Remark. Other sets, say A = {0, log 3, log 33, log 333, . . . }, require
much more complicated spaces but the main idea – gluing Cook
continua – is the same.


