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Introduction

Part of joint work with
Sergio Garcia-Balan [1] , and
Vinicius de Oliveira Rodrigues, Victor dos Santos Ronchim [2]

Paul Szeptycki Weakenings of normality and special sets of reals 2 / 12



Weak forms of normality

Natural weakenings of normality arise by requiring a restricted class of
closed sets to be separated by open sets.

E.g., for two classes of sets C and D, we could say a space is CD-normal if
any pair of disjoint sets C ∈ C and D ∈ D can be separated by disjoint
open sets.

Definition

A space X is

1 (Jones) pseudo-normal, if any pair of closed sets, one of which is
countable, can be separated by open sets.

2 (Schepin) κ-normal (or mildly-normal) if any pair of regular closed
sets can be separated.

3 (Arya and Singal) almost-normal if disjoint A and B, where A is
closed and B is regularly closed, can be separated.

4 and others.
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Ψ-spaces

For an almost disjoint family A ⊆ [ω]ω, Ψ(A) = A ∪ ω with the usual
topology.

Note: If |A| = 2ℵ0 then Ψ(A) is not normal.
If A is MAD, then Ψ(A) is not pseudo-normal.

Question

Can a MAD family have some other weak normality properties? Can one
distinguish between these properties in AD families? What about AD
families of branches in 2<ω?
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Classical examples

Example Lusin family: There is an ad A of size ω1 such that no partition
of A into disjoint uncountable sets can be separated in Ψ(A). So there is,
in ZFC, non-normal Ψ-space of size ω1

Example: Let X ⊆ 2ω. For x ∈ X , let ax = {x � n : n ∈ ω}. Then the
family of branches

AX = {ax : x ∈ X}

is an almost disjoint family on 2<ω.

Theorem (Jones)

If X ⊆ 2ω and X = F ∪G is a partition, then AF and AG can be separated
in Ψ(AX ) if and only if F and G are both relative Fσ subsets of X . Thus

1 X is a Q-set if and only if Ψ(AX ) is normal

2 X is a λ-set if and only if Ψ(AX ) is pseudo-normal.
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Completely separable AD families

Definition

Given a AD family A on ω, and X ⊆ ω

1 A � X = {a ∩ X : a ∈ A, a ∩ X is infinite} (X ∈ I++(A))

2 A is completely separable if for each X ∈ I++(A), then there is a ∈ A
with a ⊆∗ X .

Theorem
1 (Shelah) Under very weak assumptions (e.g., c < ℵω) there are

completely separable MAD families.

2 (Balcar, Dočkálková, Simon) There are completely separable AD
families in ZFC.
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Example

Example

There is an AD family A such that Ψ(A) is κ-normal but not normal.
And assuming the existence of a completely separable MAD family, the
example can be made MAD.

Proof. K ⊆ Ψ(A) is regular closed iff there is X ⊆ ω and K = X .
Clearly any finite B ⊆ A can be separated from A \ B, so it suffices to
construct an AD family A so that

X ∩ Y 6= ∅
for every pair X ,Y ∈ I+A .
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Almost normality

Theorem (Rodrigues and Ronchim)

It is consistent that there is an AD family A so that Ψ(A) is almost normal
and not normal.

A = AX ⊆ 2<ω where X ⊆ 2ω is a σ-set.

Lemma

For any X ⊆ 2ω, and Y ⊆ X , AY is the trace of a regular closed set on
AX if and only if Y is a relative Gδ.

And so, Ψ(AX ) is almost normal if and only if every relative Gδ is relative
Fσ.

Definition

A set of reals X is a σ-set if every relative Gδ is a relative Fσ.

And it is consistent that there is a σ-set of size c so not a Q-set.
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Almost normal MAD family?

Problem

Is there an almost normal MAD family?

Theorem (Cesar Corral Rojas)

PFA implies NO.

His proof uses:

Theorem (Dow)

PFA implies that every MAD family contains a Lusin subfamily.

And using PFA (or just MA) any Ψ-space over an uncountable AD family
has a nontrivial regular closed set
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Strongly ℵ0-separated AD families

An AD family A is strongly ℵ0-separated if for any pair of disjoint
countable B,C ⊆ A there is clopen partition of Ψ(A) separating B and C .

Theorem (Garcia-Sz.)

Any almost normal AD family is strongly ℵ0-separated,

and assuming CH
there is a strongly ℵ0-separated MAD family.

Theorem

For X ⊆ 2ω, AX is strongly ℵ0-separated if and only if any disjoint pair of
countable subsets of X can be separated by a set that is both a relative Gδ
and Fσ.
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Weak λ-sets

Definition

A set of reals X is a weak λ-set if any disjoint pair of countable subsets of
X there is a partition of X into two relative Gδ subsets separating them.

Of course every λ-set (=every countable subset is a relative Gδ) is a weak
λ-set.

And every weak λ-set is perfectly meagre.

Question

Is there a weak λ-set that is not a λ-set?

Question

Is it consistent that a there is an almost normal MAD family?
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1 Weak normality properties in Ψ-spaces, Sergio Garcia-Balan and Paul
Szeptycki, Fund. Math., (2022) 258, pp 137-151

2 Special sets of reals and weak forms of normality in Isbell-Mrówka
spaces, Vinicius de Oliveira Rodrigues, Victor dos Santos Ronchim
and Paul Szeptycki, Comm. Math. Univ. Car., to appear.

Thank you!
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