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Grothendieck’s Theorem

For a topological space X , Cp(X ) is the set of continuous
real-valued functions on X , given the pointwise topology inherited
from RX . The classic theorem of Grothendieck states:
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Grothendieck’s Theorem

For a topological space X , Cp(X ) is the set of continuous
real-valued functions on X , given the pointwise topology inherited
from RX . The classic theorem of Grothendieck states:

Proposition ([Gro52])

Let X be countably compact and let A ⊆ Cp(X ) be such that
every infinite subset of A has a limit point in Cp(X ). Then the
closure of A in Cp(X ) is compact.
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Grothendieck’s Theorem

For a topological space X , Cp(X ) is the set of continuous
real-valued functions on X , given the pointwise topology inherited
from RX . The classic theorem of Grothendieck states:

Proposition ([Gro52])

Let X be countably compact and let A ⊆ Cp(X ) be such that
every infinite subset of A has a limit point in Cp(X ). Then the
closure of A in Cp(X ) is compact.

[Gro52] A. Grothendieck. Critéres de compacité dans les espaces
fonctionnels généraux. Amer. J. Math., 74:168–186, 1952.
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Countably Tight & Grothendieck

Definition ([Arh98])

A ⊆ X is countably compact in X if every infinite subset of A has
a limit point in X .
X is a g -space if each A ⊆ X which is countably compact in X has
compact closure.
X is a Grothendieck space (resp. weakly Grothendieck space) if
Cp(X ) is a hereditary g -space (resp. a g -space).
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Countably Tight & Grothendieck

Definition ([Arh98])

A ⊆ X is countably compact in X if every infinite subset of A has
a limit point in X .
X is a g -space if each A ⊆ X which is countably compact in X has
compact closure.
X is a Grothendieck space (resp. weakly Grothendieck space) if
Cp(X ) is a hereditary g -space (resp. a g -space).

Theorem ([Arh98])

If X is countably tight, then X is weakly Grothendieck.
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Theorem

If Y is a hereditary g -space, then countably compact subspaces of
Y are compact.
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Theorem

If Y is a hereditary g -space, then countably compact subspaces of
Y are compact.

Proof . Let Z ⊆ Y be countably compact. Then it is countably
compact in itself and its closure in itself is compact.
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Theorem

If Y is a hereditary g -space, then countably compact subspaces of
Y are compact.

Proof . Let Z ⊆ Y be countably compact. Then it is countably
compact in itself and its closure in itself is compact.

Problem

If countably compact subspaces of Cp(X ) are compact, is X
Grothendieck?
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Countable Tightness and the Grothendieck Property in Cp

Theory

The Grothendieck property has become important in research on the

definability of pathological Banach spaces [CI18], [HT20], [HT22].
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Countable Tightness and the Grothendieck Property in Cp

Theory

The Grothendieck property has become important in research on the

definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck’s Theorem involves interchanging double

limits as one often does in Analysis, e.g. under suitable conditions,

lim
m→∞

lim
n→∞

fn(xm) = lim
n→∞

lim
m→∞

fn(xm).
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Countable Tightness and the Grothendieck Property in Cp

Theory

The Grothendieck property has become important in research on the

definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck’s Theorem involves interchanging double

limits as one often does in Analysis, e.g. under suitable conditions,

lim
m→∞

lim
n→∞

fn(xm) = lim
n→∞

lim
m→∞

fn(xm).

Jose Iovino noticed a connection between interchanging double limits and

definability in model theory.
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Countable Tightness and the Grothendieck Property in Cp

Theory

The Grothendieck property has become important in research on the

definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck’s Theorem involves interchanging double

limits as one often does in Analysis, e.g. under suitable conditions,

lim
m→∞

lim
n→∞

fn(xm) = lim
n→∞

lim
m→∞

fn(xm).

Jose Iovino noticed a connection between interchanging double limits and

definability in model theory. He and P. Casazza used this to prove the

undefinability in first order (continuous) logic of a famous pathological

Banach space: Tsirelson’s space.
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Countable Tightness and the Grothendieck Property in Cp

Theory
The Grothendieck property has become important in research on the

definability of pathological Banach spaces [CI18], [HT20], [HT22].

The proof of Grothendieck’s Theorem involves interchanging double

limits as one often does in Analysis, e.g. under suitable conditions,

lim
m→∞

lim
n→∞

fn(xm) = lim
n→∞

lim
m→∞

fn(xm).

Jose Iovino noticed a connection between interchanging double limits and

definability in model theory. He and P. Casazza used this to prove the

undefinability in first order (continuous) logic of a famous pathological

Banach space: Tsirelson’s space. I saw that their results could be

greatly generalized using Cp-theory, but today I’ll just talk about

topology rather than model theory.
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Countable Tightness and the Grothendieck Property in Cp

Theory

The Grothendieck property has become important in research on the

definability of pathological Banach spaces [CI18], [HT20], [HT22].

[CI18] P. Casazza and J. Iovino. On the undefinability of Tsirelson’s

space and its descendants. ArXiv: 1812.02840, 2018.

[HT20] C. Hamel and F. D. Tall. Model theory for Cp-theorists.

Top. Appl., paper 107197, 2020.

[HT22] C. Hamel and F. D. Tall, Cp-theory for model theorists, in

J. Iovino, ed., Beyond first order model theory, II, to appear.
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We here answer a question of Arhangel’skĭı by proving it
undecidable whether countably tight spaces with Lindelöf finite
powers are Grothendieck.

17 / 81



Grothendieck PFA C-Tight & Grothendieck Open Problems Morley Two Lemmas

We here answer a question of Arhangel’skĭı by proving it
undecidable whether countably tight spaces with Lindelöf finite
powers are Grothendieck.

We answer another of his questions by proving that PFA implies
Lindelöf countably tight spaces are Grothendieck.
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We here answer a question of Arhangel’skĭı by proving it
undecidable whether countably tight spaces with Lindelöf finite
powers are Grothendieck.

We answer another of his questions by proving that PFA implies
Lindelöf countably tight spaces are Grothendieck.

We also prove that various other consequences of MAω1 and PFA
considered by Arhangel’skĭı, Okunev, and Reznichenko are not
theorems of ZFC.
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Strengthening Arhangel’skĭı’s Result

In [Arh98], Arhangel’skĭı proved:

Proposition

MA + ¬CH implies that if X is countably tight and X n is Lindelöf
for all n < ω, then X is Grothendieck.
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Strengthening Arhangel’skĭı’s Result

In [Arh98], Arhangel’skĭı proved:

Proposition

MA + ¬CH implies that if X is countably tight and X n is Lindelöf
for all n < ω, then X is Grothendieck.

In fact, MAω1 suffices.
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Strengthening Arhangel’skĭı’s Result

In [Arh98], Arhangel’skĭı proved:

Proposition

MA + ¬CH implies that if X is countably tight and X n is Lindelöf
for all n < ω, then X is Grothendieck.

In fact, MAω1 suffices.

Arhangel’skĭı asked whether the conclusion of the Proposition is
true in ZFC.
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Strengthening Arhangel’skĭı’s Result

Proposition

MA + ¬CH implies that if X is countably tight and X n is Lindelöf
for all n < ω, then X is Grothendieck.

Arhangel’skĭı asked whether the conclusion of the Proposition is
true in ZFC.

It is not:
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Strengthening Arhangel’skĭı’s Result

Proposition

MA + ¬CH implies that if X is countably tight and X n is Lindelöf
for all n < ω, then X is Grothendieck.

Arhangel’skĭı asked whether the conclusion of the Proposition is
true in ZFC.

It is not:

Example

Assuming ♦ plus Kurepa’s Hypothesis, Ivanov [Iva78] constructed
a compact space Y of cardinality 2c such that Y n is hereditarily
separable for all n < ω. Cp(Y ) is the required counterexample.
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Strengthening Arhangel’skĭı’s Result

Proposition

MA + ¬CH implies that if X is countably tight and X n is Lindelöf
for all n < ω, then X is Grothendieck.

Arhangel’skĭı asked whether the conclusion of the Proposition is
true in ZFC.

Example

Assuming ♦ plus Kurepa’s Hypothesis, Ivanov [Iva78] constructed
a compact space Y of cardinality 2c such that Y n is hereditarily
separable for all n < ω. Cp(Y ) is the required counterexample.

To see this, we require several results from the literature.
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Arhangel’skĭı’s Result and ZFC

Lemma ([Arh92])

X n is Lindelöf for every n < ω if and only if Cp(X ) is countably tight.
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Arhangel’skĭı’s Result and ZFC

Lemma ([Arh92])

X n is Lindelöf for every n < ω if and only if Cp(X ) is countably tight.

Definition

A space X is Fréchet-Urysohn if whenever x is a limit point of
Z ⊆ X , there is a sequence in Z converging to x .
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Arhangel’skĭı’s Result and ZFC

Lemma ([Arh92])

X n is Lindelöf for every n < ω if and only if Cp(X ) is countably tight.

Definition

A space X is Fréchet-Urysohn if whenever x is a limit point of
Z ⊆ X , there is a sequence in Z converging to x .

Arhangel’skĭı later proved:

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact

subspaces of Cp(X ) are Fréchet-Urysohn.
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Arhangel’skĭı’s Result and ZFC

Lemma ([Arh92])

X n is Lindelöf for every n < ω if and only if Cp(X ) is countably tight.

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact

subspaces of Cp(X ) are Fréchet-Urysohn.

He also proved:

Lemma ([Arh92])

X embeds into Cp(Cp(X )).
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Arhangel’skĭı’s Result and ZFC
Lemma ([Arh92])

X n is Lindelöf for every n < ω if and only if Cp(X ) is countably tight.

Lemma ([Arh98])

X is Grothendieck if and only if it is weakly Grothendieck and compact

subspaces of Cp(X ) are Fréchet-Urysohn.

Lemma ([Arh92])

X embeds into Cp(Cp(X )).

Clearly, separable Fréchet-Urysohn spaces have cardinality ≤ c. Ivanov’s

space Y is too big to be Fréchet-Urysohn, yet it embeds in Cp(Cp(Y )),

so Cp(Y ) cannot be Grothendieck, although it is weakly Grothendieck.
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Arhangel’skĭı’s Result and ZFC

Clearly, separable Fréchet-Urysohn spaces have cardinality ≤ c. Ivanov’s

space Y is too big to be Fréchet-Urysohn, yet it embeds in Cp(Cp(Y )),

so Cp(Y ) cannot be Grothendieck, although it is weakly Grothendieck.

(Cp(Y ))n is, however, (hereditarily) Lindelöf for all n < ω by the
Velichko-Zenor theorem:
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Arhangel’skĭı’s Result and ZFC

Clearly, separable Fréchet-Urysohn spaces have cardinality ≤ c. Ivanov’s

space Y is too big to be Fréchet-Urysohn, yet it embeds in Cp(Cp(Y )),

so Cp(Y ) cannot be Grothendieck, although it is weakly Grothendieck.

(Cp(Y ))n is, however, (hereditarily) Lindelöf for all n < ω by the
Velichko-Zenor theorem:

Lemma ([Vel81], [Zen80])

If X n is hereditarily separable for all n < ω, then (Cp(X ))n is hereditarily
Lindelöf for all n < ω.
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[Arh92] A. V. Arhangel’skĭı. Topological Function Spaces, vol. 78 of

Mathematics and its Applications (Soviet Series). Kluwer Academic

Publishers Group, Dordrecht, 1992.

[Arh98] A. V. Arhangel’skĭı. Embedding in Cp-spaces. Topology Appl.,

85:9–33, 1998.

[Iva78] A. V. Ivanov On bicompacta all finite powers of which are

hereditarily separable. Doklady Akademii Nauk SSSR,

243(5):1109–1112, 1978.

[Vel81] N. V. Velichko. Weak topology of spaces of continuous

functions. Mathematical Notes of the Academy of Sciences of the

USSR, 30:849–854, 1981.

[Zen80] P. Zenor. Hereditary m-separability and the hereditary

m-Lindelöf property in product spaces and function spaces.

Fund. Math., 106(3):175–180, 1980.
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A dramatic strengthening of the conclusion of Arhangel’skĭı’s
Proposition is

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.
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A dramatic strengthening of the conclusion of Arhangel’skĭı’s
Proposition is

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

The proof actually follows easily from known results.
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The Proof: surlindelöf

Definition

A space is surlindelöf if it is a subspace of Cp(X ) for some Lindelöf
X .
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The Proof: surlindelöf

Definition

A space is surlindelöf if it is a subspace of Cp(X ) for some Lindelöf
X .

Arhangel’skĭı proved:

Lemma ([Arh92])

PFA implies that every surlindelöf compact space is countably
tight.
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The Proof: surlindelöf

Definition

A space is surlindelöf if it is a subspace of Cp(X ) for some Lindelöf
X .

Lemma ([Arh92])

PFA implies that every surlindelöf compact space is countably
tight.

Okunev and Reznichenko proved:

Lemma ([OR07])

MAω1 implies that every separable surlindelöf compact countably
tight space is metrizable.
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The Proof: Fréchet-Urysohn

Theorem

PFA implies that every surlindelöf compact space is
Fréchet-Urysohn.
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The Proof: Fréchet-Urysohn

Theorem

PFA implies that every surlindelöf compact space is
Fréchet-Urysohn.

Proof . Metrizable spaces are clearly Fréchet-Urysohn. By
countable tightness, if K is compact and L ⊆ K and p ∈ L, then
there is a countable M ⊆ L such that p ∈ M. But M is separable
compact and so metrizable.
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The Proof Concluded

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.
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The Proof Concluded

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

In fact, as often happens, we have:

Theorem

If ZFC is consistent, so is ZFC plus “every Lindelöf countably
tight space is Grothendieck”.
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The Proof Concluded

This proves the Theorem.

Theorem

PFA implies Lindelöf countably tight spaces are Grothendieck.

In fact, as often happens, we have:

Theorem

If ZFC is consistent, so is ZFC plus “every Lindelöf countably
tight space is Grothendieck”.

We can answer several more questions of Arhangel’skĭı, but that
would require more Cp-theory than we have time for.
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[Arh92] A. V. Arhangel’skĭı. Topological Function Spaces, vol. 78
of Mathematics and its Applications (Soviet Series). Kluwer
Academic Publishers Group, Dordrecht, 1992.

[Arh98] A. V. Arhangel’skĭı. Embedding in Cp-spaces. Topology
Appl., 85:9–33, 1998.

[OR07] O. Okunev and E. Reznichenko. A note on surlindelöf
spaces. Topology Proc., 31(2):667–675, 2007.
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Open Problems

Problem

Are Lindelöf first countable spaces Grothendieck?
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Open Problems

Problem

Are Lindelöf first countable spaces Grothendieck?

Theorem

MAω1 implies that every Lindelöf first countable space is
Grothendieck.
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Morley’s Theorem

And now for something completely different. . .
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Morley’s Theorem

And now for something completely different. . .

Conjecture (Vaught’s, 1961)

The number of non-isomorphic countable models of a complete

first-order theory in a countable language is either countable or c.
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Morley’s Theorem

Conjecture (Vaught’s, 1961)

The number of non-isomorphic countable models of a complete

first-order theory in a countable language is either countable or c.

To avoid a trivial solution from CH, code the countable models by reals

and instead conjecture an uncountable set of models includes a perfect

set.
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Morley’s Theorem

Conjecture (Vaught’s, 1961)

The number of non-isomorphic countable models of a complete

first-order theory in a countable language is either countable or c.

To avoid a trivial solution from CH, code the countable models by reals

and instead conjecture an uncountable set of models includes a perfect

set.

Theorem (Morley’s, 1970)

The number of non-isomorphic countable models is countable, includes a

perfect set, or is of size ℵ1.

50 / 81



Grothendieck PFA C-Tight & Grothendieck Open Problems Morley Two Lemmas

Morley’s Theorem

Conjecture (Vaught’s, 1961)

The number of non-isomorphic countable models of a complete

first-order theory in a countable language is either countable or c.

Theorem (Morley’s, 1970)

The number of non-isomorphic countable models is countable, includes a

perfect set, or is of size ℵ1.

Second order logic. Quantify over elements and subsets of the universe

of discourse, e.g. over natural numbers and sets of natural numbers.
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Morley’s Theorem

Conjecture (Vaught’s, 1961)

The number of non-isomorphic countable models of a complete

first-order theory in a countable language is either countable or c.

Theorem (Morley’s, 1970)

The number of non-isomorphic countable models is countable, includes a

perfect set, or is of size ℵ1.

Second order logic. Quantify over elements and subsets of the universe

of discourse, e.g. over natural numbers and sets of natural numbers.

Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller,

F. D. Tall. An undecidable extension of Morley’s theorem on the number

of countable models. Submitted.
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Morley’s Theorem

Conjecture (Vaught’s, 1961)

The number of non-isomorphic countable models of a complete

first-order theory in a countable language is either countable or c.

Theorem (Morley’s, 1970)

The number of non-isomorphic countable models is countable, includes a

perfect set, or is of size ℵ1.

Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller,

F. D. Tall. An undecidable extension of Morley’s theorem on the number

of countable models. Submitted.

No: add ℵ2 Cohen reals and then add ℵ3 random reals to a model of

V = L. Get ℵ2 < ℵ3 = 2ℵ0 countable non-isomorphic models.
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Morley’s Theorem

Theorem (Morley’s, 1970)

The number of non-isomorphic countable models is countable, includes a

perfect set, or is of size ℵ1.

Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller,

F. D. Tall. An undecidable extension of Morley’s theorem on the number

of countable models. Submitted.

No: add ℵ2 Cohen reals and then add ℵ3 random reals to a model of

V = L. Get ℵ2 < ℵ3 = 2ℵ0 countable non-isomorphic models.

Yes: Assuming there are infinitely many Woodin cardinals, there is a

model of ¬CH in which every second order theory in a countable

language either has ≤ ℵ1 isomorphism classes of countable models or else

has a perfect set of non-isomorphic models.
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Morley’s Theorem

Second order Morley is undecidable. C. J. Eagle, C. Hamel, S. Müller,

F. D. Tall. An undecidable extension of Morley’s theorem on the number

of countable models. Submitted.

No: add ℵ2 Cohen reals and then add ℵ3 random reals to a model of

V = L. Get ℵ2 < ℵ3 = 2ℵ0 countable non-isomorphic models.

Yes: Assuming there are infinitely many Woodin cardinals, there is a

model of ¬CH in which every second order theory in a countable

language either has ≤ ℵ1 isomorphism classes of countable models or else

has a perfect set of non-isomorphic models.

In the realm of large cardinals, this is a relatively weak assumption. We

expect some large cardinal assumption is necessary, but haven’t proved

that.
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Morley’s Theorem

No: add ℵ2 Cohen reals and then add ℵ3 random reals to a model of

V = L. Get ℵ2 < ℵ3 = 2ℵ0 countable non-isomorphic models.

Yes: Assuming there are infinitely many Woodin cardinals, there is a

model of ¬CH in which every second order theory in a countable

language either has ≤ ℵ1 isomorphism classes of countable models or else

has a perfect set of non-isomorphic models.

In the realm of large cardinals, this is a relatively weak assumption. We

expect some large cardinal assumption is necessary, but haven’t proved

that.

The positive conclusion is actually much more general than second order

Morley: every equivalence relation on P(R) that is obtained as a

countable intersection of projective sets has ≤ ℵ1 or a perfect set of

inequivalent elements.
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Morley’s Theorem

The positive conclusion is actually much more general than second order

Morley: every equivalence relation on P(R) that is obtained as a

countable intersection of projective sets has ≤ ℵ1 or a perfect set of

inequivalent elements.

The idea is to translate the model theory problem into a descriptive set

theory problem and then apply determinacy for σ-projective sets of reals,

which are obtained by closing the Borel sets under continuous real-valued

images, complements, and countable unions.
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Morley’s Theorem

The positive conclusion is actually much more general than second order

Morley: every equivalence relation on P(R) that is obtained as a

countable intersection of projective sets has ≤ ℵ1 or a perfect set of

inequivalent elements.

The idea is to translate the model theory problem into a descriptive set
theory problem and then apply determinacy for σ-projective sets of reals,
which are obtained by closing the Borel sets under continuous real-valued
images, complements, and countable unions. The determinacy comes
from the Woodins assumption, but one also needs to get “generic
absoluteness” theorems. This refines the work of Foreman and Magidor
in 1995, who got the equivalence relation version of our results in the
usual model for PFA (thus needing a supercompact).
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Morley’s Theorem

The idea is to translate the model theory problem into a descriptive set
theory problem and then apply determinacy for σ-projective sets of reals,
which are obtained by closing the Borel sets under continuous real-valued
images, complements, and countable unions. The determinacy comes
from the Woodins assumption, but one also needs to get “generic
absoluteness” theorems. This refines the work of Foreman and Magidor
in 1995, who got the equivalence relation version of our results in the
usual model for PFA (thus needing a supercompact).

Idea for refuting Vaught’s Conjecture: Try using machine that transforms
topological spaces into logics.
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Morley’s Theorem

The idea is to translate the model theory problem into a descriptive set
theory problem and then apply determinacy for σ-projective sets of reals,
which are obtained by closing the Borel sets under continuous real-valued
images, complements, and countable unions. The determinacy comes
from the Woodins assumption, but one also needs to get “generic
absoluteness” theorems. This refines the work of Foreman and Magidor
in 1995, who got the equivalence relation version of our results in the
usual model for PFA (thus needing a supercompact).

Idea for refuting Vaught’s Conjecture: Try using machine that transforms
topological spaces into logics.

C. Hamel, C. J. Eagle, F. D. Tall. Two applications of topology to model
theory. Ann. Pure & Appl. Logic, 2020.
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Two Lemmas

Recall from the proof above

Lemma

PFA implies that every surlindelöf compact space is countably tight.

61 / 81



Grothendieck PFA C-Tight & Grothendieck Open Problems Morley Two Lemmas

Two Lemmas

Lemma

PFA implies that every surlindelöf compact space is countably tight.

and recall

Lemma

MAω1 implies that every separable surlindelöf compact countably tight

space is metrizable.
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Two Lemmas

Lemma

PFA implies that every surlindelöf compact space is countably tight.

Lemma

MAω1 implies that every separable surlindelöf compact countably tight

space is metrizable.

These two Lemmas actually consistently solve several other
problems of Arhangel’skĭı:
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Two Lemmas

Lemma

PFA implies that every surlindelöf compact space is countably tight.

Lemma

MAω1 implies that every separable surlindelöf compact countably tight

space is metrizable.

Problem ([Arh98])

• If X is separable and compact and Y ⊆ Cp(X ) is Lindelöf, does Y
have a countable network?
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Two Lemmas

Problem ([Arh98])

• If X is separable and compact and Y ⊆ Cp(X ) is Lindelöf, does Y
have a countable network?

• If X is separable and compact and Cp(X ) is Lindelöf, must X be
hereditarily separable?

Notice that a positive answer to the first of these yields a positive
answer to the second, since a space with a countable network is
clearly hereditarily separable.
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Background Lemmas

Lemma ([Arh92, I.1.3])

X has a countable network if and only if Cp(X ) does.
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Background Lemmas

Lemma ([Arh92, I.1.3])

X has a countable network if and only if Cp(X ) does.

Okunev [Oku95] considers versions of Problem 2 with the
additional hypothesis that finite powers of Y are Lindelöf. He
proves:

Proposition

MA + ¬CH implies that if Y is a space with all finite powers Lindelöf

and X is a separable compact subspace of Cp(Y ), then X is metrizable.
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Background Lemmas

Lemma ([Arh92, I.1.3])

X has a countable network if and only if Cp(X ) does.

Proposition

MA + ¬CH implies that if Y is a space with all finite powers Lindelöf

and X is a separable compact subspace of Cp(Y ), then X is metrizable.

Okunev states that this is a reformulation of

Proposition

MA + ¬CH implies that if X is a separable compact space and
Y ⊆ Cp(X ) has all finite powers Lindelöf, then Y has a countable
network.
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Background Lemmas

Lemma ([Arh92, I.1.3])

X has a countable network if and only if Cp(X ) does.

Proposition

MA + ¬CH implies that if Y is a space with all finite powers Lindelöf

and X is a separable compact subspace of Cp(Y ), then X is metrizable.

Okunev and Reznichenko note that actually MAω1 suffices for these

instead of MA + ¬CH. They also prove:

Proposition ([OR07, I.8])

PFA implies that every surlindelöf compact separable space is metrizable.
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Background Lemmas

Proposition

MA + ¬CH implies that if Y is a space with all finite powers Lindelöf

and X is a separable compact subspace of Cp(Y ), then X is metrizable.

Proposition ([OR07, I.8])

PFA implies that every surlindelöf compact separable space is metrizable.

Proposition ([OR07, I.9])

PFA implies every surlindelöf compact space is ℵ0-monolithic, where a

space is ℵ0-monolithic if the closure of every countable set has countable

network weight.
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Answers With PFA

We can use the Two Lemmas to prove:

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.
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Answers With PFA

We can use the Two Lemmas to prove:

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

Recall our Two Lemmas:

Lemma

PFA implies that every surlindelöf compact space is countably tight.

Lemma

MAω1 implies that every separable surlindelöf compact countably tight

space is metrizable.
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The Proof

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.
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The Proof

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

We closely follow part of the argument in [Oku95] for Proposition
20. He starts by recalling some material from [Arh92] (or see
[Tka15]).
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The Proof

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

Given a continuous map p : X → Y , the dual map p∗ : Cp(Y )→ Cp(X )

is defined by p∗(f ) = f ◦ p, for all f ∈ Cp(Y ). The dual map is always

continuous; it is an embedding if and only if p is onto.
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The Proof

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

Given a continuous map p : X → Y , the dual map p∗ : Cp(Y )→ Cp(X )

is defined by p∗(f ) = f ◦ p, for all f ∈ Cp(Y ). The dual map is always

continuous; it is an embedding if and only if p is onto.

If Y ⊆ Cp(X ), then the reflection map ϕ
XY

: X → Cp(Y ) is defined by

ϕ
XY

(x)(y) = y(x), for all x ∈ X and y ∈ Y . The reflection map is

continuous.
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The Proof

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

Given a continuous map p : X → Y , the dual map p∗ : Cp(Y )→ Cp(X )

is defined by p∗(f ) = f ◦ p, for all f ∈ Cp(Y ). The dual map is always

continuous; it is an embedding if and only if p is onto.

If Y ⊆ Cp(X ), then the reflection map ϕ
XY

: X → Cp(Y ) is defined by

ϕ
XY

(x)(y) = y(x), for all x ∈ X and y ∈ Y . The reflection map is

continuous.

Proof of Theorem. Suppose X is a separable compact space and Y is a

Lindelöf subspace of Cp(X ) which does not have a countable network.
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The Proof
Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

Given a continuous map p : X → Y , the dual map p∗ : Cp(Y )→ Cp(X )

is defined by p∗(f ) = f ◦ p, for all f ∈ Cp(Y ). The dual map is always

continuous; it is an embedding if and only if p is onto.

If Y ⊆ Cp(X ), then the reflection map ϕ
XY

: X → Cp(Y ) is defined by

ϕ
XY

(x)(y) = y(x), for all x ∈ X and y ∈ Y . The reflection map is

continuous.

Proof of Theorem. Suppose X is a separable compact space and Y is a

Lindelöf subspace of Cp(X ) which does not have a countable network.

We consider the reflection map ϕ
XY

: X → Cp(Y ) and let X1 = ϕ
XY

(X ).

Then X1 is separable and compact.
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The Proof

Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

Given a continuous map p : X → Y , the dual map p∗ : Cp(Y )→ Cp(X )

is defined by p∗(f ) = f ◦ p, for all f ∈ Cp(Y ). The dual map is always

continuous; it is an embedding if and only if p is onto.

Proof of Theorem. Suppose X is a separable compact space and Y is a

Lindelöf subspace of Cp(X ) which does not have a countable network.

We consider the reflection map ϕ
XY

: X → Cp(Y ) and let X1 = ϕ
XY

(X ).

Then X1 is separable and compact.

Next, consider the dual map ϕ∗
XY

: Cp(X1)→ Cp(X ). It’s an embedding,

so Y1 = (ϕ∗
XY

)−1(Y ) is a subspace of Cp(X1) homeomorphic to Y .
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The Proof
Theorem

PFA implies that if X is a separable compact space and Y ⊆ Cp(X ) is

Lindelöf, then Y has a countable network.

Proof of Theorem. Suppose X is a separable compact space and Y is a

Lindelöf subspace of Cp(X ) which does not have a countable network.

We consider the reflection map ϕ
XY

: X → Cp(Y ) and let X1 = ϕ
XY

(X ).

Then X1 is separable and compact.

Next, consider the dual map ϕ∗
XY

: Cp(X1)→ Cp(X ). It’s an embedding,

so Y1 = (ϕ∗
XY

)−1(Y ) is a subspace of Cp(X1) homeomorphic to Y .

Since Y does not have a countable network, neither does Y1. Then

neither does Cp(X1), so neither does X1. But by the Two Lemmas, X1 is

metrizable. This is a contradiction, since compact metrizable spaces have

a countable network.
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